
xxx 1 (2017) x-xx Submitted x/xx; published x/xx

Markovian State and Action Abstractions for Markov Decision
Processes via Hierarchical Monte Carlo Tree Search

Aijun Bai AIJUNBAI@BERKELEY.EDU
University of California at Berkeley

Siddharth Srivastava SRIVASS@UTRC.UTC.COM
United Technology Research Center

Stuart Russell RUSSELL@CS.BERKELEY.EDU

University of California at Berkeley

Abstract

Markov decision processes (MDPs) provide a rich framework for planning and learning under
uncertainty. In the context of hierarchical planning and learning for MDPs, state abstraction is
an important technique for scaling MDP algorithms by treating a group of states as a unit. As is
well known, however, it introduces difficulties due to the non-Markovian nature of state-abstracted
models. Whereas prior approaches rely upon ad hoc fixes for this issue, we propose instead to
view the state-abstracted model as a partially observable MDP (POMDP) and show that we can
thereby take advantage of state abstraction without sacrificing the Markov property. We bound
the performance loss induced by the abstraction, and exploit the hierarchical structure introduced
by state abstraction by extending the theory of options to a POMDP setting. In this context, we
propose a hierarchical Monte Carlo tree search algorithm for approximately solving the abstracted
POMDP and show that it converges to a recursively optimal hierarchical policy. Both theoretical
and empirical results suggest that abstracting an MDP into a POMDP yields a scalable solution
approach.

1. Introduction

The general task of sequential decision-making under uncertainty is of great interest to the Artifi-
cial Intelligence (AI) community (Russell & Norvig, 2003). It embraces a broad range of common
problems found in planning and learning. Currently, the most general and clear fundamental for-
mulation for these problems is achieved through the theory of Markov decision processes (MDPs),
which provides a rich mathematical framework for planning and learning under uncertainty in fully
observable environments (Puterman, 1994). State-of-the-art offline algorithms, such as linear pro-
gramming, value iteration, and policy iteration, solve MDPs by computing a policy for the entire
state space before the agent is deployed to interact with the environment. In practice, offline algo-
rithms often suffer from the problem of scalability due to the well-known “curse of dimensionality”
— the size of state space grows exponentially with the number of state variables (Littman, Dean,
& Kaelbling, 1995). On the other hand, online algorithms alleviate this difficulty by computing a
near-optimal policy merely for the current state. The basic observation is that an agent can only
encounter a fraction of the overall states at run-time interacting with the environment. Typically,
an online algorithm evaluates available actions for the current state and selects the seemingly best
one by exploring the underlying expectimax search tree (Barto, Bradtke, & Singh, 1995; Hansen &
Zilberstein, 2001; Kocsis & Szepesvári, 2006; Bai, Wu, & Chen, 2015).

c©2017 AI Access Foundation. All rights reserved.

BAI, SRIVASTAVA & RUSSELL

(a) The rooms example. (b) A 3-state MDP.

Figure 1: State abstraction examples.

In this paper, we consider the problem of approximately solving MDPs online. Take Monte
Carlo tree search (MCTS), which is a popular online planning algorithm for MDPs, as an example.
The idea of MCTS is to build a best-first search tree by simulating a tree policy and a rollout policy to
estimate the optimal action values using sampled trajectories (Browne, Powley, Whitehouse, Lucas,
Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, & Colton, 2012b). It has been observed that
the performance of MCTS is typically dominated by the effective search depth before exhausting the
total computation time within each action-selection step (Kearns, Mansour, & Ng, 1999; Hostetler,
Fern, & Dietterich, 2014), which is in turn determined by the branching factor of the search tree. In
MDPs, the branching factor consists of action branching and stochastic branching. Action branching
depends on the number of available actions; stochastic branching depends on the number of possible
outcomes for an action. Most online planning algorithms build search trees in the ground state (or
concrete state) space; for large problems, however, the branching factor leads to poor performance
as the feasible search depth is typically too small provided with limited computation resources.

As an important technique for scaling MDP algorithms, state abstraction (or state aggrega-
tion) reduces the stochastic branching factor by treating a group of states as a unit (Giunchiglia &
Walsh, 1992; Dearden & Boutilier, 1997; Li, Walsh, & Littman, 2006; Konidaris, 2016). As an
example, Figure 1a illustrates a rooms domain, where a robot needs to navigate from position S to
position G. In the figure, black cells represent walls; all other cells are valid ground states. Cells
sharing the same color correspond to the same abstract state, which in turn represents a room. The
abstracted problem has typically a reduced abstract state space. However, abstraction results in a
non-Markovian model (Srivastava, Russell, & Pinto, 2016), because the transition probability of
reaching the next abstract state and the reward received by taking an action within an abstract state
depend on the occupancy probability over concrete states represented by that abstract state. It is well
known that the occupancy probability depends on the history of all past taken actions and visited
abstract states (Jaakkola, Singh, & Jordan, 1995). Take the 3-state deterministic MDP depicted in
Figure 1b as an example, where an edge represents a deterministic transition that is invoked by exe-
cuting the labeled action. If we group states s1 and s2 into an abstract state s1,2, then the probability
of reaching state s3 after taking action a in s1,2 equals the probability of being actually in state s1,
which depends exactly on the initial state and the number of times that the agent has executed action
b in ground state s1 and action a in ground state s2 in the past history prior to entering state s3.

2

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Safe state abstraction methods avoid the non-Markovian problem by eliminating only irrelevant
state variables (Dietterich, 1999; Andre & Russell, 2002; Jong & Stone, 2005; Hengst, 2007) or
exploiting particular symmetric structure within the transition and reward models (such as bisim-
ulation or homomorphism) (Dean & Givan, 1997; Dearden & Boutilier, 1997; Dean, Givan, &
Leach, 1997; Ravindran & Barto, 2002, 2003a; Givan, Dean, & Greig, 2003; Ravindran & Barto,
2003b; Pineau, Gordon, & Thrun, 2003; Ravindran & Barto, 2004; Wolfe & Barto, 2006; Taylor,
Precup, & Panagaden, 2009; Ferns, Castro, Precup, & Panangaden, 2012; Jiang, Singh, & Lewis,
2014; Anand, Grover, Mausam, & Singla, 2015). Such methods compute near-lossless abstractions,
which almost preserve the optimal policies for MDPs, but are often of limited usefulness, because
near-lossless abstractions rarely exist and are computationally difficult to find. Popular proposals to
resolve this situation are bounded-parameter Markov decision processes (BMDPs) and the weight-
ing function approach. BMDP explicitly represent the abstract MDP with uncertain transition and
reward functions resulting from doing state abstraction (Givan, Leach, & Dean, 1997). An interval
value iteration algorithm is developed to compute polices for a BMDP that are optimal in terms of
so-called optimistic and pessimistic criteria. However, general state abstraction usually introduces
significantly high ranges in the parameter intervals defining the resulting BMDP, and thus the found
policy has limited optimality guarantee in the original concrete MDP. For example, the abstracted
BMDP resulting from doing state abstraction in the 3-state MDP depicted in Figure 1b would have
a trivial bounded transition function stating that T (s3 | s1,2, a) ∈ [0, 1]. The weighting function
approach introduces an ad hoc weighting function (also known as aggregation probability), which
functions like an occupancy probability for each concrete state given an abstract state (Bertsekas,
1995; Singh, Jaakkola, & Jordan, 1995; Li et al., 2006; Hostetler et al., 2014). Superficially, this
ensures that the abstract transition and reward functions can be written in a Markovian way. It is
usually assumed that the weighting function is manually specified and remains constant in run-time.
We argue that such approaches cannot be accurate enough to capture the true dynamics of the ab-
stract system, where the occupancy probability is in fact non-stationary, depending on the whole
history of past actions and abstract states, or in other words, the policy being computed/executed!

In this paper, we show that a ground MDP with state abstraction turns out to be a partially
observable Markov decision process (POMDP). Generally speaking, POMDP extends MDP to par-
tially observable environments (Kaelbling, Littman, & Cassandra, 1998). The POMDP resulting
from doing state abstraction over an MDP has the original ground MDP as the underlying MDP
and the set of abstract states as the set of observations (Bai, Srivastava, & Russell, 2016). Belief
states in the resulting POMDP replace the otherwise necessary aggregation probability as in the
weighting function approach, with the advantage that the belief state can be calculated by Bayesian
updating. We show that algorithms such as POMCP can be naturally extended to do online planning
for the ground MDP. Particularly, observing that the set of abstract states introduces automatically
a hierarchical structure, we further define temporal transitions between abstract states as abstract
actions by extending the theory of options (Sutton, Precup, & Singh, 1999) to a POMDP setting,
and develop a hierarchical MCTS algorithm that handles Markovian state and action abstractions
for MDPs following a POMDP formulation. Theoretically, we show that the performance loss in
terms of action values due to approximation in state abstraction is bounded by a constant multiple
of a state aggregation error introduced by grouping states with different optimal actions; and, the
resulting algorithm converges to a recursively optimal hierarchical policy consistent with the input
state and action abstractions. Perhaps counterintuitively, we find that a hierarchical MCTS algo-
rithm solving the abstracted POMDP can outperform ground MCTS by orders of magnitude. The

3

BAI, SRIVASTAVA & RUSSELL

main contributions of this paper are: 1) we formalize state abstraction on an MDP as a POMDP and
bound its performance loss; and 2) we develop a hierarchical Monte Carlo tree search algorithm
with action abstraction for approximately solving the resulting abstracted POMDP.

The remainder of this paper is organized as follows. Section 2 briefly reviews some background
of this paper. Section 4 presents the main approach. Section 5 gives our theoretical findings in terms
of performance loss, optimality guarantee and convergence. Section 6 shows the empirical results
on the rooms domain and an extended continuous-rooms domain. Section 3 introduces some related
work. Finally, we conclude with discussion of future work in Section 7.

2. Background

In this section, we briefly review background on Markov decision processes (MDPs), partially ob-
servable Markov decision processes (POMDPs), and Monte Carlo tree search (MCTS) algorithms.
We also introduce some existing state- and action- abstraction techniques in the literature.

2.1 MDPs and POMDPs

MDPs provide a rich mathematical framework for planning and learning under uncertainty in fully
observable environments (Puterman, 1994).

Definition 1 (Markov Decision Process). A Markov decision process (MDP) is a tuple 〈S,A, T,R, γ〉,
where S is the finite state space, A is the finite action space, T : S×A×S → [0, 1] is the transition
function with T (s′ | s, a) being the probability of reaching state s′ ∈ S after taking action a ∈ A
in state s ∈ S, R : S × A → R is the reward function with R(s, a) being the immediate reward
collected by taking action a ∈ A in state s ∈ S, and 0 < γ ≤ 1 is a discount factor.

Given an MDP M = 〈S,A, T,R, γ〉, a (stationary) policy π : S → A is a mapping from states
to actions with π(s) being the action to be taken in state s. The value function V π(s) of a policy π
is defined as the expected cumulative reward received by following policy π starting from state s:

V π(s) = E

[∞∑
t=0

γtR(st, π(st))

]
, (1)

where st is the state at time step t. The corresponding action-value function Qπ(s, a) is defined as
the expected cumulative reward received by taking action a in state s and following π thereafter:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′ | s, a)V π(s′). (2)

A solution for an MDP is an optimal policy π∗ that maximizes the value function for all states.
The corresponding optimal value function V π∗ (or V ∗ for short) satisfies the Bellman equation
(Bellman, 1957):

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V ∗(s′)

}
. (3)

In presence of partially observable environments, POMDPs extend MDPs by introducing an
observation model (Kaelbling et al., 1998).

4

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Definition 2 (Partially Observable Markov Decision Process). A partially observable Markov de-
cision process (POMDP) is defined as a tuple 〈S,A,Z, T,R,Ω, γ〉, where 〈S,A, T,R, γ〉 is the
underlying MDP, Z is the finite observation space and Ω : S × A × Z → [0, 1] is the observation
function with Ω(z | s, a) being the probability of observing z ∈ Z after having taken action a ∈ A
and resulting in state s ∈ S.

Given a POMDP P = 〈S,A,Z, T,R,Ω, γ〉, a belief state (or belief for short) b : S → [0, 1] is
defined as a probability distribution over states with b(s) being the probability of being in state s.
Given current belief b, after taking action a and observing observation z, the new belief b′ can be
computed in a Bayesian filtering way b′ = τ(b, a, z) such that:

b′(s′) = ηΩ(z | s′, a)
∑
s∈S

T (s′ | s, a)b(s), (4)

where η = 1/Pr(z | b, a) is a normalizing factor with Pr(z | b, a) =
∑

s′∈S Ω(z | s′, a)
∑

s∈S T (s′ |
s, a)b(s) being the probability of observing observation z after taking action a in belief b. Let B
be the set of all possible belief states. A POMDP can be equivalently transformed to a Bayesian-
adaptive MDP (BAMDP) 〈B, A, T+, R+, γ〉 defined over the belief space, with B being the state
space, A being the action space, R+(b, a) =

∑
s∈S R(s, a)b(s) being the reward function and T+

being the transition function such that:

T+(b′ | b, a) =
∑
z∈Z

1[b′ = τ(b, a, z)] Pr(z | b, a), (5)

where 1 is the indicator function. Let V ∗ be the optimal value function of the resulting MDP. The
corresponding Bellman equation defined in belief space B can be written as:

V ∗(b) = max
a∈A

{
R+(b, a) + γ

∑
z∈Z

Pr(z | b, a)V ∗(τ(b, a, z))

}
. (6)

We define a history ht = [a0, z1, a1, z2 · · · , at−1, zt] at time step t as the sequence of all previous
actions and observations, where at and zt are the action and observation at time step t respectively.
It can be seen from Equation 4 that, provided with an initial belief state b0 at time step 0, a history
ht at time step t determines uniquely a belief state bt(s | ht). Let H be the set of all possible
histories, and b = ζ(h) be the corresponding belief state given history h and the initial belief state.
The Bellman equation defined in history spaceH can be written in a similar way:

V ∗(h) = max
a∈A

{
R+(h, a) + γ

∑
z∈Z

Pr(z | h, a)V ∗(haz)

}
, (7)

whereR+(h, a) = R+(ζ(h), a), Pr(z | h, a) = Pr(z | ζ(h), a) , and haz denotes the history result-
ing from taking action a at history h and observing z afterwards, such that ζ(haz) = τ(ζ(h), a, z).

2.2 Monte Carlo Tree Search

The idea of Monte Carlo Tree Search (MCTS) is to build a best-first search tree by simulating a
tree policy and a rollout policy to estimate the optimal action values using sampled trajectories. It is

5

BAI, SRIVASTAVA & RUSSELL

Figure 2: The main process of Monte Carlo tree search on game play (Chaslot et al., 2008).

model-free and requires only a generative model as a simulator of the underlying problem. MCTS
evaluates a node, which corresponds to a state for an MDP or a belief state for a POMDP, in the
search tree by: 1) selecting an action according to the tree policy; 2) executing the selected action
in the simulator; 3) recursively evaluating the resulting state/belief if it is already in the search tree,
otherwise inserting it into the search tree and playing the rollout policy based on Monte Carlo sim-
ulations; and 4) updating the statistics of tree nodes by backpropagating the simulation results up
to the root node (Chaslot et al., 2008; Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen,
Tavener, Perez, Samothrakis, & Colton, 2012a). The main process of MCTS consisting of selection,
expansion, simulation and backprogagation in game play domains is outlined in Figure 2. Iteratively
repeating this process, MCTS builds an asymmetric best-first search tree. When interrupted at any
time, MCTS reports the best action based on the current action values in the search tree. An exam-
ple of the resulting search tree is illustrated in Figure 3. MCTS has shown to be computationally
efficient, anytime and highly parallelisable. To date, great success has been achieved by MCTS
in variety of domains, such as game play (Winands, Bjornsson, & Saito, 2010; Gelly & Silver,
2011; Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Pan-
neershelvam, Lanctot, et al., 2016), planning under uncertainty (Kocsis & Szepesvári, 2006; Silver
& Veness, 2010), and Bayesian reinforcement learning (Guez, Silver, & Dayan, 2012; Asmuth &
Littman, 2011; Vien, Ertel, Dang, & Chung, 2013).

In the context of multi-armed bandits, Upper confidence bound (UCB) is the most successful
and widely-used algorithm to address the so-called exploration and exploitation dilemma (Auer,
Cesa-Bianchi, & Fischer, 2002; Auer, 2003). UCB applied to trees (UCT) is perhaps one of the
most popular implementations of MCTS for MDPs (Kocsis & Szepesvári, 2006; Gelly & Silver,
2007; Finnsson & Björnsson, 2008; Winands et al., 2010; Gelly & Silver, 2011; Keller & Eyerich,
2012; Barrett, Stone, Kraus, & Rosenfeld, 2013). UCT treats each state of the search tree as an

6

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Figure 3: The resulting asymmetric search tree generated by MCTS (Coquelin & Munos, 2007).

MAB, and selects the action that maximizes the UCB heuristic, defined as:

UCB(s, a) = Q̄(s, a) + c

√
logN(s)

N(s, a)
, (8)

where Q̄(s, a) is the mean return of action a in state s from all previous simulations, N(s, a) is the
number of times that action a has been selected in state s, N(s) =

∑
a∈AN(s, a) is the number of

times that state s has been visited, and c is the exploration-exploitation factor. Kocsis and Szepesvári
(2006) proved that with an appropriate choice of c the probability of selecting the optimal action
converges to 1 as the number of samples grows to infinity.

Partially observable Monte Carlo planning (POMCP) is an extension of UCT to POMDPs (Sil-
ver & Veness, 2010). POMCP employs a root sampling technique to simulate a trajectory from a
sampled state according to the belief state ζ(h) associated with history h at the root node. POMCP
chooses the action that maximizes the UCB heuristic, defined in terms of histories and actions:

UCB(h, a) = Q̄(h, a) + c

√
logN(h)

N(h, a)
, (9)

where Q̄(h, a) is the average outcome of applying action a at history node h over all previous simu-
lations,N(h, a) is the visitation count of action a at history h,N(h) =

∑
a∈AN(h, a) is the overall

visitation count of history h, and c is the exploration-exploitation factor. Additionally, POMCP uses
a particle filter (Gordon, Salmond, & Smith, 1993; Thrun, 1999) to approximate the belief state, by
conducting a Monte Carlo procedure to update particles based on sampled observations, rewards,
and state transitions. Silver and Veness (2010) show that, for a suitable choice of c, the value func-
tion constructed by POMCP converges in probability 1 to the optimal value function. POMCP has
been shown with success in various problems (Macindoe, Kaelbling, & Lozano-Pérez, 2012; Vien
et al., 2013; Barrett, Agmon, Hazon, Kraus, & Stone, 2014).

7

BAI, SRIVASTAVA & RUSSELL

2.3 State Abstraction

State abstraction for an MDP is associated with an abstraction function. We adopt the definition for
abstraction function of Li et al. (2006).

Definition 3 (State Abstraction). LetM = 〈S,A, T,R, γ〉 be a ground MDP, andX = {x1, x2, · · · }
be a partition on state space S. An abstraction function ϕ : S → X is a mapping from states to
abstract states, such that ϕ(s) ∈ X is the abstract state corresponding to ground state s, and the
inverse image ϕ−1(x), with x ∈ X , is the set of ground states that correspond to abstract state x
under abstraction ϕ.

Given a ground MDP M = 〈S,A, T,R, γ〉 and an abstraction function ϕ defined over abstract
state space X , let ht = [a0, x1, a1, x2, · · · , at−1, xt] be the history of past taken actions and visited
abstract states at time step t. An occupancy probability Pr(s | h) is defined as the probability of
being in state s given history h. From a Bayesian perspective, the occupancy probability can be
updated in a filtering way:

Pr(s′ | hax) = η1[x = ϕ(s′)]
∑
s∈S

T (s′ | s, a) Pr(s | h), (10)

where η is a normalizing factor, and hax is the history resulting from taking action a at history h
and reaching abstract state x. Let Pr(h′ | h, a) be the probability of reaching history h′ after taking
action a at history h, and R(h, a) be the expected reward of taking action a at history h. Let end(h)
be the latest abstract state of history h. It turns out that:

Pr(h′ | h, a) = 1[x′ = end(h′)] Pr(x′ | h, a), (11)

and
R(h, a) = 1[x = end(h)]

∑
s∈ϕ−1(x)

R(s, a) Pr(s | h). (12)

Here, Pr(x′ | h, a) is the probability of reaching abstract state x′ after taking action a at history h,
which can further be expressed as:

Pr(x′ | h, a) = 1[x = end(h)]
∑

s∈ϕ−1(x)

Pr(s | h)
∑

s′∈ϕ−1(x′)

T (s′ | s, a). (13)

On condition that, for any s ∈ ϕ−1(x),
∑

s′∈ϕ−1(x′) T (s′ | s, a) ≡ CT(x, a, x′) and R(s, a) ≡
CR(x, a) are constants, we have:

Pr(h′ | h, a) = 1[x = end(h)]1[x′ = end(h′)]CT(x, a, x′), (14)

and
R(h, a) = 1[x = end(h)]CR(x, a). (15)

That is to say that the abstract model is indeed Markovian in the space of abstract states. Thus
we can define an abstract MDP Mϕ = 〈X,A, Tϕ, Rϕ, γ〉 with Tϕ(x′ | x, a) = CT(x, a, x′) and
Rϕ(x, a) = CR(x, a). Solving this abstract MDP gives an optimal abstract policy π∗ϕ : X → A,
which can be translated to a policy π∗ : S → A for the ground MDP M by following π∗(s) =
π∗ϕ(ϕ(s)) for any s ∈ S. It has been shown that π∗ preserves the optimality for M as well. This

8

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

condition is called bisimulation (or homomorphism) in the context of model minimization (Dean
& Givan, 1997; Dearden & Boutilier, 1997; Ravindran & Barto, 2002, 2003a; Givan et al., 2003).
A special case of bisimulation for a factored MDP (FMDP) is that there exist some irrelevant state
variables that can be safely removed from the representation (Dietterich, 1999; Andre & Russell,
2002; Jong & Stone, 2005).

Bisimulation enables safe state abstraction for MDPs. However, safe state abstraction rarely
exists, and is computationally difficult to find. Approximations have been made in the literature
to relax the bisimulation condition. For example, several similarity metrics in state space are pro-
posed to do approximate bisimulation abstraction (Ferns, Panangaden, & Precup, 2004; Ravindran
& Barto, 2004; Taylor et al., 2009). Alternatively, Jiang et al. (2014) and Anand et al. (2015) eval-
uate the bisimulation condition in a sampled state space utilizing UCT. These methods enable lossy
state abstraction, where the bisimulation condition is not completely satisfied. The resulting abstract
model with lossy state abstraction is in general non-Markovian in the space of abstract states. In the
spirit of having an abstract MDP Mϕ = 〈X,A, Tϕ, Rϕ, γ〉, without computing the exact occupancy
probability Pr(s | h), the best we can know about the abstract transition and reward functions
— Tϕ(x′ | x, a) and Rϕ(x, a) — is that they are constrained within certain ranges as Pr(s | h)
is varying within its own range. Givan et al. (1997) introduce the notion of bounded-parameter
Markov decision process (BMDP) to explicitly represent the abstract MDP with uncertain transition
and reward functions resulting from doing state abstraction. An interval value iteration algorithm is
developed to compute polices for a BMDP that are optimal in terms of so-called optimistic and pes-
simistic criteria. In contrast, the weighting function approach introduces a weighting function (or
aggregation probability) w : S × X → [0, 1] to approximate the occupancy probability Pr(s | h)
by dropping its dependency on past history and treating it as a stationary probability distribution
conditioned only on the latest abstract state, such that Pr(s | h) ≈ w(s, end(h)). Superficially, this
ensures that the abstract transition and reward functions can be written in a Markovian way:

Tϕ(x′ | x, a) =
∑

s∈ϕ−1(x)

w(s, x)
∑

s′∈ϕ−1(x′)

T (s′ | s, a), (16)

and
Rϕ(x, a) =

∑
s∈ϕ−1(x)

R(s, a)w(s, x). (17)

Therefore, an abstract MDP Mϕ = 〈X,A, Tϕ, Rϕ, γ〉 can be defined following the weighting func-
tion assumption (Bertsekas, 1995; Li et al., 2006; Hostetler et al., 2014). We argue in Section 4.1
that such approaches cannot be accurate enough to capture the true dynamics of the abstract system,
where the occupancy probability is in fact non-stationary, depending on the whole history of past
actions and abstract states, or in other words, the policy being computed/executed!

2.4 Action Abstraction

State abstraction aggregates a set of a states into a macro state. Action abstraction (or temporal
abstraction) extends the macro idea to closed-loop policies, or more precisely, closed-loop partial
policies, by introducing macro actions (temporally-extend actions or options) composed from many
concrete actions (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998). Following the options
theory of Sutton et al. (1999), an option takes a variable amount of time to complete.

9

BAI, SRIVASTAVA & RUSSELL

Definition 4 (MDP Options). An option defined over an MDP 〈S,A, T,R, γ〉 is a tuple 〈I, π, β〉,
where I ⊆ S is the initiation set, meaning that this option is available in state s if and only if s ∈ I,
π : S → A is the inner policy, and β : S → [0, 1] is the termination condition with β(s) being the
probability of terminating in state s.

As a special case, a primitive action can be seen as an option that terminates deterministically
in one time step. It has been shown that an MDP equipped with a set of options turns out to be
a semi-Markov decision process (SMDP), where an action following its own course of control can
take multiple time steps to terminate (Duff & Bradtke Michael, 1995; Parr & Russell, 1998).

Definition 5 (Semi-Markov Decision Process). A semi-Markov decision process (SMDP) is a tuple
〈S,O, T,R, γ〉, where S is the finite state space,O is the finite option space, T : S×O×S×N→
[0, 1] is the transition function with T (s′, N | s, o) being the probability of reaching state s′ ∈ S,
N ∈ N time steps after taking option o ∈ O in state s ∈ S, R : S × O → R is the reward
function with R(s, o) being the expected reward collected by taking option o ∈ O in state s ∈ S,
and 0 < γ ≤ 1 is a discount factor.

The definitions of policy and value function extend naturally to SMDPs. In the research of
reinforcement learning, action abstraction has been adopted under the name of hierarchical rein-
forcement learning (HRL) (Barto & Mahadevan, 2003). HRL aims to learn a policy for an MDP
efficiently by exploiting the underlying hierarchical structure of the problem. In this context, the
approaches of hierarchical abstract machines (HAMs) (Parr & Russell, 1998) and ALisp (Andre &
Russell, 2002; Marthi, Russell, Latham, & Guestrin, 2005) write the control of an HRL agent as a
partial program with some choice points left unspecified, and then find the optimal “completion”
of that program. More precisely, these methods model the interaction between the partial program
and its environment as a SMDP, and apply a Q-learning algorithm within the resulting SMDP to
learn the optimal policy selecting actions for choice points. Alternatively, the theory of options
defines abstract actions as closed-loop policies for taking actions over a period of time, and mod-
els the HRL agent within a SMDP formulation (Sutton et al., 1999; Stolle & Precup, 2002). The
MAXQ approach decomposes the original MDP into a hierarchy of subtasks, where each subtask is
considered as a SMDP with its low-level subtasks as actions, and learns these subtasks simultane-
ously utilizing a recursive way of value function decomposition (Dietterich, 2000; Diuk, Strehl, &
Littman, 2006; Jong & Stone, 2008).

Action abstraction has also been applied to speed up planning for MDPs, by exploiting the
underlying hierarchical structure of the problem at hand. For instance, Hauskrecht et al. (1998)
develop an abstract MDP model that works with macro-actions and macro-states by treating macro-
actions as local policies that act in certain regions of state space, and restricting states in the abstract
MDP to those at the boundaries of regions. Variable influence structure analysis (VISA) (Jonsson
& Barto, 2006) performs hierarchical decomposition for an MDP by building dynamic Bayesian
network (DBN) models for actions, and constructing causal graphs that capture dynamics between
state variables, under the assumption that a factored MDP model is available. Barry, Kaelbling, and
Lozano-Perez (2011) propose an offline algorithm called DetH* to solve large MDPs hierarchically
by assuming that the transitions between macro-states are deterministic. Bai, Wu, and Chen (2012,
2015) develop a hierarchical online planning algorithm (namely MAXQ-OP) for MDPs based on
MAXQ value function decomposition, provided with estimations of termination distribution for
high-level subtasks a prior. Vien and Toussaint (2014) develop a hierarchical MCTS algorithm,

10

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

that can learn the termination distributions of subtasks while computing their policies, following the
MAXQ approach.

3. Related Work

Hostetler et al. (2014) analyzed state aggregation in MDPs following the weighting function ap-
proach. They established a performance loss bound in terms of a state abstraction error and a
weighting function error. Our method has removed the weighting function error since the POMDP
formulation guarantees that the optimal weighting function will always be used in the algorithm.

Vien and Toussaint (2014) developed a similar hierarchical MCTS framework for MDPs and
POMDPs according to the theory of MAXQ value function decomposition. The MAXQ frame-
work is not completely applicable to exploit the hierarchical structure induced by abstract states.
A MAXQ subtask is specified with a termination predicate which partitions the (belief) state space
into a set of active (belief) states and a set of terminal (belief) states (Dietterich, 2000). Using
MAXQ subtasks to model temporal transitions between abstract states as abstract actions results in-
evitability in a set of overlapping subtasks, in which case we have also to introduce a pseudo-reward
function for each subtask. Taking the rooms domain as an example, let x → y be the subtask of
moving from room x to room y. If we treat histories ending with x as the set of active belief states,
then histories not ending with x have to be the respective terminal belief states, in which case sup-
posedly different abstract actionsA→ B andA→ C actually have the same termination condition,
which leads them to have the same learned policy. One way to avoid this problem is to introduce a
pseudo-reward function within each subtask to encourage the subtask to move to the abstract goal
state by additionally collecting a pseudo-reward, e.g. r(h) = 1 if end(h) = y, otherwise r(h) = 0.
On the other hand, if we treat histories ending with y as the set of terminal belief states, then histo-
ries not ending with y have to be the respective active belief states, in which case abstract actions
A→ B and D → B have the same active belief states such that they are executable in the same set
of belief states, which is not desirable either. The options theory used in this paper does not have
this overlapping-subtask problem thanks to the concepts of termination condition and initiation set,
which can be seen as an extension of the MAXQ termination predicate.

Bai et al. (2012, 2015) also developed a hierarchical online planning algorithm for MDPs
(namely MAXQ-OP) based on MAXQ value function decomposition. Their method needs to es-
timate the termination distribution for each subtask in order to evaluate the completion function
recursively in a dynamic programming way. In this paper, the high-level and low-level policies
are learned simultaneously via a hierarchical MCTS approach, without the need to estimate the
termination distributions. In the context of hierarchical reinforcement learning, Castro and Precup
(2011) present a mechanism for automatically constructing options in a finite MDP by computing a
bisimulation metric between states identifying abstract states. In this paper, we constructs abstract
actions that connect input abstract states automatically. One future work might be to incorporate the
approach of Castro and Precup into our framework so that there is no need to specify abstract states
manually beforehand.

4. The Main Approach

In this section, we present our main approach to Markovian state and action abstractions for MDPs
via hierarchical MCTS.

11

BAI, SRIVASTAVA & RUSSELL

4.1 State Abstraction within a POMDP Formulation

As aforementioned, state abstraction generally results into a non-Markovian system in the abstracted
state space. The safe state abstraction approach avoids the non-Markovian problem by ignoring only
irrelevant state variables, or exploiting some particular structure of the ground MDP. The bounded
MDP approach explicitly consider the uncertain transition and reward models resulting from doing
state abstraction, but can only provide optimality guarantee in very limited sense. The weighting-
function approach approximates the occupancy probability as a fixed weighting function by drop-
ping its condition on the whole past history, however this approach can not capture the true dynam-
ics of the abstract system, since the occupancy probability is non-stationary anyway! Our approach
takes an alternative POMDP perspective. We treat abstract states as observations, and develop an
observation function Ω according to the abstraction function ϕ such that Ω(x | s) = 1[x = ϕ(s)]
for any x ∈ X and s ∈ S. The abstract system turns out to be a POMDP 〈S,A,X, T,R,Ω, γ〉
with X and Ω being the observation space and the observation function respectively. We denote the
resulting POMDP by POMDP(M,ϕ) indicating that it is created by applying abstraction function
ϕ on the ground MDP M . Within the resulting POMDP, the belief state b(s | h) is exactly the
occupancy probability Pr(s | h).

From a POMDP perspective, the weighting function approach actually tries to approximate the
belief state b(s | h) using a fixed distribution w(s, x) with end(h) = x, and finds a memoryless
policy πϕ as a mapping from observation space X to action space A. It has been shown that a mem-
oryless policy for a POMDP can be arbitrarily worse than an optimal policy for the POMDP, which
in turn can be arbitrarily worse than an optimal policy for the underlying MDP (Singh, Jaakkola, &
Jordan, 1994). Thus, the weighting function approach is not well motivated from a POMDP point of
view. In contrast, finding directly a near-optimal policy for POMDP(M,ϕ) could be a considerably
better choice for planning with state abstraction over the ground MDP M . Additionally, bounded
optimality results within the POMDP formulation can also be established given a bounded state
abstraction.

Exactly solving POMDP(M,ϕ) via a dynamic programming method such as value iteration
is usually intractable due to the continuous nature of the belief space. However, from an online
planning point of view, it can be observed that the search tree in POMDP(M,ϕ) typically has a
much lower branching factor than in the ground MDPM . This makes it feasible to use approximate,
search-based solution techniques for solving POMDP(M,ϕ). More precisely, a search-based online
planning algorithm running inM starting from state s0 builds an expectimax tree T (s0) with actions
as the expectation nodes and states as the maximization nodes. The branching factor of T (s0) is
bounded by |A|B, where B is the maximal number of possible outcomes for any state–action pair.
A similar expectimax tree T (b0) with the same actions as the expectation nodes and belief states
as the maximization nodes can be built by running a search-based online planning algorithm in
POMDP(M,ϕ) starting from belief state b0 with b0(s) = 1[s = s0]. The branching factor of
T (b0) is bounded by |A|B′ where B′ is the maximal number of possible observations (i.e., abstract
states) for any belief–action pair. Generally, we have |A|B′ < |A|B, if B′ < B which holds
for most abstractions due to the fact that B ≤ |S|, B′ ≤ |X| and |X| � |S|. Therefore, a
search-based online planning algorithm running in POMDP(M,ϕ) resulting from abstraction could
be much more efficient than running directly in the ground MDP M in terms of exploring the
underlying expectimax search tree. It can also be observed that the observation function in the
resulting POMDP is actually deterministic, which also makes it easy to be solved.

12

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

In this paper, we employ a POMCP algorithm running within POMDP(M,ϕ) to find an online
policy for the ground MDP consistent with state abstraction ϕ, and refer to the resulting algorithm
as POMCPϕ. The online policy produced by POMCPϕ can be translated naturally to M , given the
fact that when the agent is in ground state s, it can conclude that the respective belief state satisfies
b(s′) = 1[s′ = s] for any s′ ∈ S. Since we are using a Monte Carlo algorithm to build the search
tree, it is not necessary to have explicit representations of the underlying transition and reward
functions for the ground MDP M . Only a simulator of M is needed. Another important advantage
with POMCPϕ is that it can be extended naturally to problems with continuous state spaces without
significant modifications, given suitable abstraction functions defined over continuous states.

4.2 Automatic Action Abstraction in Belief Space

The proposed approach of state abstraction, we suggest, typically results in a search tree with a
lower stochastic branching factor. The complementary approach of action abstraction can increase
the effective search depth by considering high-level actions composed from many concrete actions.
A given state abstraction naturally induces an action abstraction, where abstract actions connect
abstract states in a one high-level step. We extend the options framework (Sutton et al., 1999)
to a POMDP setting to model abstract actions within POMDP(M,ϕ) — the abstracted POMDP
resulting from applying state abstraction ϕ over MDP M . Common results of options with respect
to MDPs can be naturally extended to POMDPs as well.

Definition 6 (POMDP Options). Consider a POMDP 〈S,A,Z, T,R,Ω, γ〉. Let H be the history
space. An option is defined as a tuple 〈I, π, β〉, where I ⊆ H is the initiation set, meaning that
this option is available at history h if and only if h ∈ I, π : H → A is the inner policy, and
β : H → [0, 1] is the termination condition with β(h) being the probability of terminating this
option at history h.

Provided with the abstraction function ϕ, a temporally-extended transition (with possibly mul-
tiple time steps) in POMDP(M,ϕ) from a history ending with abstract state x ∈ X to a history
ending with one of x’s neighbors y ∈ X is considered a named option ox→y, represented as a tuple
〈I, π, β〉. Here, I is the initiation set I = {h | h ∈ H ∧ end(h) = x} indicating that ox→y is
executable only at a history ending with observation x, π : H → A is an inner policy for ox→y
defined over H and β is a termination condition that β(h) = 1 if end(h) = y, and β(h) = 0
otherwise. Intuitively, ox→y connects histories ending with abstract state x to histories ending with
abstract state y. In the rooms domain, for example, oA→B is the option moving the agent from room
A to room B, which is executable only if the agent observes that it is in room A, and terminates
when the agent observes that it is in room B. In fact, any two neighboring abstract states introduce
automatically a high-level option that connects them. Let O be the set of options consisting of all
possible direct transitions between histories ending with different abstract states. The set O can
either be constructed manually by enumerating all the neighboring abstract states, or learned incre-
mentally from an empty set by introducing a new option each time a new high-level transition has
been observed. In this paper, we assume the former case for convenience. The main results can
be easily extended to the latter case. Either way, it is not necessary to specify the local policy for
each option beforehand. The proposed algorithm learns the high-level option-selection policy and
the low-level, local option policies simultaneously via nested Monte Carlo planning.

The overall option-selection policy µ is defined as a mapping from histories to options µ :
H → O. Let πo be the local policy of option o. The hierarchical policy as a set of policies

13

BAI, SRIVASTAVA & RUSSELL

Π = {µ, πo1 , πo2 , · · · } represents a hierarchical solution for POMDP(M,ϕ), where µ corresponds
to the root task and the πos correspond to its subtasks. Given Π, in a hierarchical control mode, the
agent selects an option o = µ(ht) when initiated in a history ht, and follows the option o according
to πo until it terminates in ht+k (k ≥ 1), at which point a new option µ(ht+k) is selected; in a
polling control mode, the agent executes the action suggested by the current option µ(ht) selected
by µ at history ht, regardless of which option is selected at the last time step. It has been shown that
the polling execution of a hierarchical policy Π yields higher expected value than the hierarchical
execution of the same hierarchical policy (Sutton et al., 1999; Dietterich, 2000). In this paper, we
develop a hierarchical MCTS algorithm with state and action abstractions according to the value
function decomposition as in the hierarchical control mode, but run the algorithm empirically as in
the polling control mode.

In hierarchical control mode, let V µ(h) be the value of following µ starting from history h, and
let Qµ(h, o) be the value of executing option o at history h and following µ thereafter. Let |h| be
the number of action–observation pairs of history h. It turns out that V µ(h) = Qµ(h, µ(h)), and

Qµ(h, o) = V πo(h) +
∑
h′∈H

γ|h
′|−|h| Pr(h′ | h, o)V µ(h′), (18)

where Pr(h′ | h, o) — the termination distribution of option o — gives the probability that o ter-
minates at history h′ after |h′| − |h| time steps. Here, V πo(h) gives the value of following op-
tion o starting from history h, which can be further expressed as V πo(h) = Qπo(h, πo(h)), where
Qπo(h, a) gives the value of executing the primitive action a at history h and following o thereafter,
which is expressed as:

Qπo(h, a) = R+(h, a) + γ
∑
x∈X

Pr(x | h, a)V πo(hax). (19)

Combining policy evaluation with policy improvement, an optimal hierarchical policy Π∗ =
{µ∗, π∗o1 , π∗o2 , · · · } can be computed in principle by iteratively applying V µ∗(h) = maxoQ

µ∗(h, o)
and V π∗o (h) = maxaQ

π∗o (h, a). The problem here is that the termination distributions are unknown
for the agent, because complete options with local policies are not assumed to be provided in ad-
vance, and estimating the termination distribution of an option implies that the local policy of the
option is known. Instead, the agent has to find near-optimal policies for the root task and its sub-
tasks simultaneously. We alleviate this problem by conducting a series of nested MCTS (namely
POMCP) processes over the hierarchy. A high-level search tree for the root task is built by running
MCTS with options as the macro actions. Each option builds its own sub-search tree via a nested
MCTS process. In the search step, when simulating an option, its own sub-search tree is used to
evaluate its Q-value. The leaf nodes of a sub-search tree serve as the next nodes of the high-level
search tree. The simulation inside the sub-search tree is directed by its own tree and rollout policies,
which guide the simulation in accomplishing the subtask corresponding to this option. It is also
possible to design option-specific informative (rather than purely random) rollout policies for par-
ticular options, which is usually easier than designing an informative rollout policy for the ground
MDP. In the back-propagation step, Q-values are updated according to Equations 18 and 19. This
learning-by-simulation process ensures that the local policies of options as well as their termination
distributions converge simultaneously. Given converged low-level policies and their termination
distributions, the high-level policy converges in the limit as well. The resulting algorithm is denoted

14

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Algorithm 1: The main algorithm
Agent(s0 : initial state, ϕ : abstraction function, Πrollout : rollout policy)
h← ∅
P(h)← {s0}
repeat
T ← an empty search tree
a← OnlinePlanning(h, T , ϕ,Πrollout)
Execute a and observe abstract state x
h← hax
P(h)← ParticleFilter(P(h), a, x)

until termination conditions;

OnlinePlanning(h : history, T : search tree, ϕ : abstraction function,
Πrollout : rollout policy)

repeat
s ∼ P(h)
Search(root task, s, h, 0, T , ϕ,Πrollout)

until resource budgets reached;
return GetGreedyPrimitive(root task, h)

by HPOMCPϕ indicating that it is a hierarchical MCTS algorithm running in POMDP(M,ϕ) result-
ing from doing state and action abstractions on the ground MDP M with ϕ as the state abstraction
function and O as the set of abstract actions.

4.3 The Main Algorithm

The main algorithm HPOMCPϕ is outlined in Algorithms 1 to 4. In the algorithm, the root task, its
subtasks (modeled as options) and primitive actions are considered uniformly as tasks. For example,
a task as a parameter of the Search function could be either the root task, or one of the options,
or one of the primitive actions. The algorithm builds a search tree for each task, up to the maximal
planning horizon H , in the space of histories consistent with the hierarchy defined by the input ab-
straction function ϕ. The belief state corresponding to a history h is represented as a set of particles,
denoted by P(h), which are updated using a particle filter. In the implementation, we do not need
to explicitly maintain h as a full sequence of actions and observations. Instead, we use a hash value
of h as an index, and update it incrementally, i.e. hash(haz) = hash combine(hash(h), a, z).

We now describe the subroutines in more detail. The Agent function is the overall procedure
interacting with the environment in a polling control mode. It calls OnlinePlanning to select a
primitive action, executes it, observes the resulting abstract state, and updates particles repeatedly.
The OnlinePlanning function runs in an anytime fashion. At each iteration, it samples a state s
from the belief state represented as a set of particles corresponding to h, and invokes a hierarchical
search process for the root task from history h and sampled state s by calling Search. It finally
returns a greedy primitive action according to the current search tree and action values. It is worth
noting that in practice the algorithm can also take advantage of the fact that at the root node of the
search tree the agent actually has access to the true ground state, in which case the set of particles
at the root node contains only one single state. This does not change the fact that the algorithm is

15

BAI, SRIVASTAVA & RUSSELL

Algorithm 2: The tree search algorithm
Search(t : task, s : state, h : history, d : depth, T : search tree,
ϕ : abstraction function, Πrollout : rollout policy)

if t is primitive then
〈s′, r〉 ∼ Simulate(s, t)
x← ϕ(s′)
return 〈r, 1, htx, s′〉

else
if d ≥ H or t terminates at h then

return 〈0, 0, h, s〉
else

if node 〈t, h〉 is not in tree T then
Insert node 〈t, h〉 to T
return Rollout(t, s, h, d, ϕ,Πrollout)

else
a∗ ← argmaxa

{
Q[t, h, a] + c

√
logN [t,h]
N [t,h,a]

}
〈r′, n′, h′, s′〉 ← Search(a∗, s, h, d, T , ϕ,Πrollout)
〈r′′, n′′, h′′, s′′〉 ← Search(t, s′, h′, d+ n′, T , ϕ,Πrollout)
N [t, h]← N [t, h] + 1
N [t, h, a∗]← N [t, h, a∗] + 1
r ← r′ + γn

′
r′′

Q[t, h, a∗]← Q[t, h, a∗] + r−Q[t,h,a∗]
N [t,h,a∗]

return 〈r, n′ + n′′, h′′, s′′〉

Algorithm 3: The pollling rollout algorithm
Rollout(t : task, s : state, h : history, d : depth, ϕ : abstraction function,
Πrollout : rollout policy)

if d ≥ H or t terminates at h then
return 〈0, 0, h, s〉

else
a← GetPrimitive(Πrollout, t, h)
〈s′, r′〉 ← Simulate(s, a)
x← ϕ(s′)
〈r′′, n, h′′, s′′〉 ← Rollout(t, s′, hax, d+ 1, ϕ,Πrollout)
r ← r′ + γr′′

return 〈r, n+ 1, h′′, s′′〉

searching in the space of belief states due to the way the tree is expanded and the value functions
are updated.

The Search function builds a search tree for each task in the space of histories constrained
by the hierarchy. For a primitive action, it simply runs a one-step simulation and returns the result

16

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Algorithm 4: The primitive-action selection algorithms
GetGreedyPrimitive(t : task, h : history)
if t is primitive then

return t
else

a∗ ← argmaxaQ[t, h, a]
return GetGreedyPrimitive(a∗, h)

GetPrimitive(Π : policy, t : task, h : history)
if t is primitive then

return t
else

return GetPrimitive(Π, πt(h), h)

encoded in a tuple. For a non-primitive action t which could either be the root task or one of its
subtasks, it returns the result returned by a Rollout subroutine if the node 〈t, h〉 is not already in
the tree, otherwise it 1) selects a greedy (macro) action a∗ for task t according to the UCB action-
selection heuristic, 2) invokes a nested search process for the selected (macro) action a∗ with the
same state s, history h and depth d as the input parameters, 3) recursively explores the current search
tree starting from the history h′ and state s′ returned by the search of a∗, and 4) updates estimated
Q-values according to Equation 18 for the root task or Equation 19 for an option. More precisely,
Q[root task, h, a] ≈ Qµ(h, a), where µ is the high-level policy represented by the high-level search
tree, and a is an option executable at history h; and Q[t, h, a] ≈ Qπt(h, a), where t is an option, πt
is the local policy represented by the nested search tree of t, and a is a primitive action.

The Rollout function uses a hierarchical rollout policy Πrollout to run a sequence of Monte
Carlo simulations in a polling control mode according to the generative model of the ground MDP
that is encoded in the function Simulate. It returns a tuple 〈r, n, h, s〉 where r is the sum of
sampled rewards, n is the total number of steps, h is the resulting history and s is the final state which
follows the belief state corresponding to h. In the algorithm, Πrollout is assumed to be a hierarchical
policy defined over the history space. The GetPrimitive function returns a primitive action at
history node h for task t suggested by a hierarchical policy Π. It recursively finds the right action
suggested by the current task t according to πt ∈ Π until it reaches a primitive action. In particular,
the GetGreedyPrimitive function returns the greedy action at history h for task t suggested
by the hierarchical policy represented by the current search tree and action values.

5. Theoretical Results

In this section, we present our main theoretical results in terms of performance loss, optimality
guarantee and convergence.

5.1 Optimality Results with State Abstraction

Theorem 1. POMCPϕ finds the optimal policy consistent with abstraction ϕ.

Proof. This follows directly from the optimality results of POMCP which states that POMCP finds
the optimal policy for the underlying POMDP (Silver & Veness, 2010). Applying state abstraction ϕ

17

BAI, SRIVASTAVA & RUSSELL

on a ground MDPM results into a POMDP POMDP(M,ϕ) with the observations being the abstract
states. POMCPϕ further finds the optimal policy of this POMDP. Thus, POMCPϕ finds the optimal
policy consistent with the input state abstraction ϕ.

Inspired by the abstraction criteria introduced in (Hostetler et al., 2014), we define aggregation
error as follows.

Definition 7 (Aggregation Error). The aggregation error of state abstraction 〈X,ϕ〉 for a ground
MDP M = 〈S,A, T,R, γ〉 is e, if ∃̊a ∈ A, such that for all x ∈ X , ϕ(s) = x and d ∈ [0, H],
|Vd(s)−Qd(s, å) |≤ e, where Vd and Qd are the optimal value and action-value functions at
depth d in the search tree of M , and H is the maximal planning horizon.

A bounded aggregation error requires that the action-value of å is close to the optimal value for
all ground states within the same abstract state x. Particularly, e = 0 implies that all ground states
within the same abstract state share the same optimal action. Computing exactly the aggregation
error implies solving the entire ground MDP completely which is usually infeasible, but this doesn’t
change the fact that such aggregation error exists and measures the approximation error introduced
by grouping states that have different optimal actions when doing state abstraction.

Theorem 2. For state abstraction 〈X,ϕ〉 for a ground MDP M = 〈S,A, T,R, γ〉 with aggrega-
tion error e, let s0 be the current state in the ground MDP M and let h0 with P(h0) = {s0}
be the corresponding history in POMDP(M,ϕ). Let Q∗(s, ·) and Q∗(h, ·) be the optimal ac-
tion values of M and POMDP(M,ϕ) respectively. Let a∗ = argmaxa∈AQ

∗(h0, a) be the opti-
mal primitive action found in POMDP(M,ϕ) at history h0, and define an action-value error as
E(a∗) = |maxa∈AQ

∗(s0, a)−Q∗(s0, a∗)|. Suppose the maximal planning horizon is H , then
E(a∗) is bounded by E(a∗) ≤ 2He if γ = 1, else E(a∗) ≤ 2γ 1−γH

1−γ e.

Proof. Consider the search trees of M and POMDP(M,ϕ). We define a specific action-value error
for history h and action a at depth d in the search tree of POMDP(M,ϕ) to be:

Ed(h, a) =

∣∣∣∣∣Qd(h, a)−
∑
s∈S

b(s | h)Qd(s, a)

∣∣∣∣∣ , (20)

where Qd(s, ·) and Qd(h, ·) are optimal action values at depth d in the search trees of M and
POMDP(M,ϕ) respectively. By applying Bellman equations, we have

Ed(h, a) = γ

∣∣∣∣∣∑
h′∈H

Pr(h′ | h, a)Vd+1(h
′)

−
∑
s∈S

b(s | h)
∑
s′∈S

T (s′ | s, a)Vd+1(s
′)

∣∣∣∣∣
= γ

∣∣∣∣∣∑
h′∈H

Pr(h′ | h, a)Vd+1(h
′)

−
∑
s′∈S

Vd+1(s
′)
∑
s∈S

b(s | h)T (s′ | s, a)

∣∣∣∣∣ . (21)

18

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Noticing that

Pr(s′ | h, a) =
∑
s∈S

T (s′ | s, a)b(s | h)

=
∑
h′∈H

b(s′ | h′) Pr(h′ | h, a), (22)

it follows that

Ed(h, a) = γ

∣∣∣∣∣∑
h′∈H

Pr(h′ | h, a)Vd+1(h
′)

−
∑
h′∈H

Pr(h′ | h, a)
∑
s′∈S

b(s′ | h′)Vd+1(s
′)

∣∣∣∣∣
≤ γ

∑
h′∈H

Pr(h′ | h, a)

∣∣∣∣∣Vd+1(h
′)

−
∑
s′∈S

b(s′ | h′)Vd+1(s
′)

∣∣∣∣∣ , (23)

by applying the triangle inequality. On the other hand, since∣∣∣∣∣Vd(h)−max
a∈A

∑
s∈S

b(s | h)Qd(s, a)

∣∣∣∣∣ ≤ max
a∈A

Ed(h, a), (24)

and ∣∣∣∣∣max
a∈A

∑
s∈S

b(s | h)Qd(s, a)−
∑
s∈S

b(s | h)Vd(s)

∣∣∣∣∣
≤
∑
s∈S

b(s | h)

∣∣∣∣∣Qd(s, å)− Vd(s)
∣∣∣∣∣ ≤ e, (25)

we have ∣∣∣∣∣Vd(h)−
∑
s∈S

b(s | h)Vd(s)

∣∣∣∣∣ ≤ max
a∈A

Ed(h, a) + e. (26)

Therefore,

Ed(h, a) ≤ γ
[∑
h′∈H

Pr(h′ | h, a) max
a′∈A

Ed+1(h
′, a′) + e

]

≤ γ
[

max
h′∈H,a′∈A

Ed+1(h
′, a′) + e

]
, (27)

for all h ∈ H and a ∈ A. Let E(d) = maxh∈H,a∈AEd(h, a). We get E(d) ≤ γ[E(d + 1) + e].
At terminal nodes, both QH(h, ·) and QH(s, ·) equal 0, so E(H) = 0. Therefore, E(d) ≤ (H − d)e

if γ = 1, otherwise E(d) ≤ γ 1−γH−d

1−γ e. At the root node, let a∗ = argmaxaQ0(h0, a), and
b∗ = argmaxa∈AQ0(s0, a

∗). If a∗ = b∗, E(a∗) = 0; otherwise, we must have Q0(h0, a
∗) ≥

Q0(h0, b
∗). Noticing that P(h0) = {s0}, since |Q0(s0, b

∗)−Q0(h0, b
∗)| ≤ E(0) and |Q0(s0, a

∗)−
Q0(h0, a

∗)| ≤ E(0), we get E(a∗) = |Q0(s0, b
∗)−Q0(s0, a

∗)| ≤ 2E(0).

19

BAI, SRIVASTAVA & RUSSELL

5.2 Convergence Results with Action Abstraction

Theorem 3. With probability 1, HPOMCPϕ converges to a recursively optimal hierarchical policy
for POMDP(M,ϕ) over the hierarchy defined by the input state and action abstractions.

Proof. For a particular option that connects two abstract states, HPOMCPϕ finds the optimal policy
with probability 1 following the convergence results of POMCP with sufficient explorations in the
limit. Given the fact that, when options converge, their termination distributions also converge, the
root task reduces to a stationary semi-Markov Decision Process (SMDP) defined over the belief
space. HPOMCPϕ then finds the optimal policy in the limit for the root task over the converged
SMDP by extending the convergence results of POMCP to SMDPs over belief space. Since the
high-level policy is optimal given optimal low-level policies, HPOMCPϕ converges to a recursively
optimal hierarchical policy.

6. Experiments

This section presents the experiments conducted on the rooms domain and an extended continuous-
rooms domain comparing with several baseline algorithms.

6.1 Rooms Domain

The ROOMS[m,n, k] problem simulates a robot navigating in a m × n grid map containing k
rooms, as depicted in Figure 1a. The 8 primitive actions are E, SE, S, SW, W, NW, N and NE. Each
action has a probability 0.2 of mistake, in which case a random action is executed instead. If any
movement is going to collide with the wall, the agent stays at its current position. Each primitive
action has a reward of -1. Moving into the goal has a reward of 10. In the ground MDP, the stochastic
branching factor for an action is up to 8. With state abstraction by assuming a room as an abstract
state, the stochastic branching factor for an action reduces to 2. An option is defined as a transition
from a room to one of its neighbors. The discount factor is γ = 0.98. The maximal planning
horizon is determined as H = blogγ εc = 341, where ε is set to be 0.001. Figure 4 with x axis in
log scale shows the results of running UCT, UCTϕ, POMCPϕ, HPOMCPϕ and smart-HPOMCPϕ
in ROOMS[17, 17, 4] and ROOMS[25, 13, 8] problems, where UCT runs directly in the ground
state space, UCTϕ is a UCT algorithm running entirely in the abstract state space, POMCPϕ is a
POMCP algorithm running on POMDP(M,ϕ) resulting from doing state abstraction on the ground
MDPM , HPOMCPϕ is the proposed hierarchical MCTS algorithm running on POMDP(M,ϕ), and
smart-HPOMCPϕ is a HPOMCPϕ algorithm equipped with hand-coded informative rollout policies
for options. UCT, UCTϕ, POMCPϕ and HPOMCPϕ are all developed with purely random rollout
policies. The performance is evaluated using averaged discounted return in terms of the number of
simulations and the averaged computation time per action. Each data point is averaged over 100
runs (or up to 2 hours of total computation time). It can be seen from the results that POMCPϕ
outperforms UCT or has at least the same performance, indicating that modeling a ground MDP
with state abstraction as a POMDP and solving the POMDP via approximated, search-base online
planning algorithms is feasible. UCTϕ uses the empirical distributions of Pr(s | x) to approximate
w(s, x) and finds a memoryless policy as a mapping from abstract states to actions following the
weighting function approach. It has easily the worst performance in all cases, confirming that
finding memoryless policies might not be the right way to do state abstractions since too much
information on the abstract level is ignored. The main algorithm — HPOMCPϕ — outperforms

20

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

−55
−50
−45
−40
−35
−30
−25
−20
−15
−10

1 10 100 1000 10000 100000 1e+06

D
is

co
un

te
dR

et
ur

n

Simulations

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(a) ROOMS[17, 17, 4]

−60
−55
−50
−45
−40
−35
−30
−25
−20
−15

1 10 100 1000 10000 100000 1e+06

D
is

co
un

te
dR

et
ur

n

Simulations

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(b) ROOMS[25, 13, 8]

−55
−50
−45
−40
−35
−30
−25
−20
−15
−10

1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

co
un

te
dR

et
ur

n

Time Per Action (s)

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(c) ROOMS[17, 17, 4]

−60
−55
−50
−45
−40
−35
−30
−25
−20
−15

1e-050.00010.001 0.01 0.1 1 10 100 1000

D
is

co
un

te
dR

et
ur

n

Time Per Action (s)

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(d) ROOMS[25, 13, 8]

Figure 4: Empirical results on the rooms domains.

UCT by orders of magnitude. HPOMCPϕ also outperforms POMCPϕ substantially suggesting
that exploiting the hierarchical structure introduced by doing state abstraction contributes the main
improvement. With the help of an option-specific rollout policy which is designed to near-optimally
move to the intersection area of two connected rooms, smart-HPOMCPϕ improves on HPOMCPϕ
significantly. The possibility of introducing option-specific rollout policies can also be considered
as an advantage of HPOMCPϕ.

6.2 Continuous Rooms Domain

We further extend ROOMS[m,n, k] into a continuous state space and propose a C-ROOMS[m,n, k]
problem, where each cell has a size of 1 (m2). The position of the agent is represented using contin-
uous (x, y) coordinates. A primitive action moves the agent by a distance of 1 (m) in expectation,
augmented with a Gaussian error. The agent finishes this task if the distance to the goal is within
0.5 (m). UCT in such continuous domains reduces to a depth-1 search which can be seen as a single
step of policy improvement over the rollout policy. To run POMCPϕ and HPOMCPϕ algorithms in

21

BAI, SRIVASTAVA & RUSSELL

−55
−50
−45
−40
−35
−30
−25
−20
−15
−10

1 10 100 1000 10000 100000 1e+06

D
is

co
un

te
dR

et
ur

n

Simulations

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(a) C-ROOMS[17, 17, 4]

−60
−55
−50
−45
−40
−35
−30
−25
−20
−15

1 10 100 1000 10000 100000 1e+06

D
is

co
un

te
dR

et
ur

n

Simulations

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(b) C-ROOMS[25, 13, 8]

−55
−50
−45
−40
−35
−30
−25
−20
−15
−10

0.0001 0.001 0.01 0.1 1 10 100

D
is

co
un

te
dR

et
ur

n

Time Per Action (s)

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(c) C-ROOMS[17, 17, 4]

−60
−55
−50
−45
−40
−35
−30
−25
−20
−15

0.0001 0.001 0.01 0.1 1 10 100

D
is

co
un

te
dR

et
ur

n

Time Per Action (s)

UCT
UCTϕ

POMCPϕ
HPOMCPϕ

smart-HPOMCPϕ

(d) C-ROOMS[25, 13, 8]

Figure 5: Empirical results on the continuous rooms domains.

this domain, we need only provide the appropriate observation function defined over the continuous
state space. Figure 5 shows the results of running UCT, UCTϕ, POMCPϕ, HPOMCPϕ and smart-
HPOMCPϕ in C-ROOMS[17, 17, 4] and C-ROOMS[25, 13, 8] problems, confirming that POMCPϕ
and HPOMCPϕ algorithms have the ability to run in continuous domains without significant mod-
ifications. Similar trends can be seen in the results. It is also interesting to see that although UCT
has reduced to a depth-1 search in this continuous domain, it still has rather good performance. This
might be because the value function of a random policy in this domain provides a good heuristic,
thus a greedy policy over this heuristic can work well.

7. Conclusion

In this paper, we propose that state- and action-abstracted MDPs can be viewed as POMDPs.
We bound the performance loss induced by the abstraction and we develop a hierarchical MCTS
algorithm with automatically constructed abstract actions for approximately solving the abstract

22

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

POMDP. The algorithm converges to a recursively optimal hierarchical policy for the ground MDP
consistent with the input state abstractions. Empirical results show that the proposed approach im-
proves ground MCTS by orders of magnitude on benchmark domains. In future work, we plan
to extend this approach to general reinforcement learning algorithms with features (such as those
introduced by various state-space function approximators). The non-Markovianess introduced by
features can be overcome by using a POMDP formulation; the hierarchical structure in the feature
space can be exploited by using a similar hierarchical MCTS approach as shown in this paper.

Acknowledgments

Funding for this research was provided by ONR under contract N00014-12-1-0609, by DARPA
under contract N66001-15-2-4048, and by the United Technologies Research Center. Opinions,
findings, and conclusion or recommendations expressed in this material are those of the authors and
do not necessarily reflect the view of the funding agencies.

References

Anand, A., Grover, A., Mausam, M., & Singla, P. (2015). ASAP-UCT: abstraction of state-action
pairs in UCT. In Proceedings of the 24th International Conference on Artificial Intelligence,
pp. 1509–1515.

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning
agents. In Proceedings of the 8th National Conference on Artificial Intelligence and 14th
Conference on Innovative Applications of Artificial Intelligence, pp. 119–125.

Asmuth, J., & Littman, M. L. (2011). Learning is planning: near Bayes-optimal reinforcement
learning via Monte-Carlo tree search. In Uncertainty in Artificial Intelligence, pp. 19–26.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2), 235–256.

Auer, P. (2003). Using confidence bounds for exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3, 397–422.

Bai, A., Srivastava, S., & Russell, S. (2016). Markovian state and action abstractions for MDPs via
hierarchical MCTS. In 25th International Joint Conference on Artificial Intelligence (IJCAI),
New York, United States.

Bai, A., Wu, F., & Chen, X. (2012). Online planning for large MDPs with MAXQ decomposition
(extended abstract). In Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2012).

Bai, A., Wu, F., & Chen, X. (2015). Online planning for large Markov decision processes with
hierarchical decomposition. ACM Transactions on Intelligent Systems and Technology (TIST),
6(4), 45.

Barrett, S., Agmon, N., Hazon, N., Kraus, S., & Stone, P. (2014). Communicating with unknown
teammates. In Proc. of 13th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2012).

Barrett, S., Stone, P., Kraus, S., & Rosenfeld, A. (2013). Teamwork with limited knowledge of
teammates. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence.

23

BAI, SRIVASTAVA & RUSSELL

Barry, J., Kaelbling, L., & Lozano-Perez, T. (2011). Deth*: Approximate hierarchical solution of
large Markov decision processes. In International Joint Conference on Artificial Intelligence,
pp. 1928–1935.

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic programming.
Artificial Intelligence, 72(1-2), 81–138.

Barto, A., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning. Dis-
crete Event Dynamic Systems, 13(4), 341–379.

Bellman, R. (1957). Dynamic Programming (1 edition). Princeton University Press, Princeton, NJ,
USA.

Bertsekas, D. P. (1995). Dynamic programming and optimal control, Vol. 1. Athena Scientific
Belmont, MA.

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., & Colton, S. (2012a). A survey of Monte Carlo tree search
methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1), 1–43.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., & Colton, S. (2012b). A survey of Monte Carlo tree search
methods. IEEE Trans. on Computational Intelligence and AI in Games, 4, 1–43.

Castro, P. S., & Precup, D. (2011). Automatic construction of temporally extended actions for mdps
using bisimulation metrics. In Recent Advances in Reinforcement Learning, pp. 140–152.
Springer.

Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2008). Monte-carlo tree search: A new framework
for game AI. In Darken, C., & Mateas, M. (Eds.), Proceedings of the Fourth Artificial In-
telligence and Interactive Digital Entertainment Conference, October 22-24, 2008, Stanford,
California, USA. The AAAI Press.

Coquelin, P.-A., & Munos, R. (2007). Bandit algorithms for tree search. In Uncertainty in Artificial
Intelligence.

Dean, T., & Givan, R. (1997). Model minimization in markov decision processes. In AAAI/IAAI,
pp. 106–111.

Dean, T., Givan, R., & Leach, S. (1997). Model reduction techniques for computing approximately
optimal solutions for markov decision processes. In Proceedings of the Thirteenth conference
on Uncertainty in artificial intelligence, pp. 124–131. Morgan Kaufmann Publishers Inc.

Dearden, R., & Boutilier, C. (1997). Abstraction and approximate decision-theoretic planning.
Artificial Intelligence, 89(1), 219–283.

Dietterich, T. G. (1999). State abstraction in MAXQ hierarchical reinforcement learning. Advances
in Neural Information Processing Systems, 994–1000.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value function de-
composition. Journal Artificial Intelligence Research(JAIR), 13, 227–303.

Diuk, C., Strehl, A. L., & Littman, M. L. (2006). A hierarchical approach to efficient reinforcement
learning in deterministic domains. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pp. 313–319. ACM.

24

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Duff, S. J., & Bradtke Michael, O. (1995). Reinforcement learning methods for continuous-time
markov decision problems. Adv Neural Inf Process Syst, 7, 393.

Ferns, N., Panangaden, P., & Precup, D. (2004). Metrics for finite markov decision processes. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 162–169.
AUAI Press.

Ferns, N., Castro, P. S., Precup, D., & Panangaden, P. (2012). Methods for computing state similarity
in markov decision processes. arXiv preprint arXiv:1206.6836.

Finnsson, H., & Björnsson, Y. (2008). Simulation-based approach to general game playing.. In
AAAI, Vol. 8, pp. 259–264.

Gelly, S., & Silver, D. (2011). Monte-Carlo tree search and rapid action value estimation in com-
puter go. Artificial Intelligence, 175(11), 1856–1875.

Gelly, S., & Silver, D. (2007). Combining online and offline knowledge in uct. In Proceedings of
the 24th international conference on Machine learning, pp. 273–280. ACM.

Giunchiglia, F., & Walsh, T. (1992). A theory of abstraction. Artificial Intelligence, 57(2), 323–389.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 147(1), 163–223.

Givan, R., Leach, S., & Dean, T. (1997). Bounded parameter markov decision processes. In Euro-
pean Conference on Planning, pp. 234–246. Springer.

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing), Vol. 140,
pp. 107–113. IET.

Guez, A., Silver, D., & Dayan, P. (2012). Efficient Bayes-adaptive reinforcement learning using
sample-based search. In Advances in Neural Information Processing Systems, pp. 1034–1042.

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions with
loops. Artificial Intelligence, 129(1-2), 35–62.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., & Boutilier, C. (1998). Hierarchical so-
lution of markov decision processes using macro-actions. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pp. 220–229. Morgan Kaufmann Publish-
ers Inc.

Hengst, B. (2007). Safe state abstraction and reusable continuing subtasks in hierarchical reinforce-
ment learning. AI 2007: Advances in Artificial Intelligence, 58–67.

Hostetler, J., Fern, A., & Dietterich, T. (2014). State aggregation in Monte Carlo tree search. In
Proceedings of 28th AAAI Conference on Artificial Intelligence.

Jaakkola, T., Singh, S. P., & Jordan, M. I. (1995). Reinforcement learning algorithm for partially
observable Markov decision problems. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.),
Advances in Neural Information Processing Systems, Vol. 7, pp. 345–352. The MIT Press.

Jiang, N., Singh, S., & Lewis, R. (2014). Improving UCT planning via approximate homomor-
phisms. In Proceedings of the 2014 International Conference on Autonomous Agents and
Multi-Agent Systems, pp. 1289–1296.

25

BAI, SRIVASTAVA & RUSSELL

Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant state variables. In
Kaelbling, L. P., & Saffiotti, A. (Eds.), IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005,
pp. 752–757. Professional Book Center.

Jong, N., & Stone, P. (2008). Hierarchical model-based reinforcement learning: R-max + MAXQ. In
Proceedings of the 25th international conference on Machine learning, pp. 432–439. ACM.

Jonsson, A., & Barto, A. (2006). Causal graph based decomposition of factored mdps. The Journal
of Machine Learning Research, 7, 2259–2301.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1-2), 99–134.

Kearns, M., Mansour, Y., & Ng, A. (1999). A sparse sampling algorithm for near-optimal planning
in large Markov decision processes. In Proceedings of the 16th international joint conference
on Artificial intelligence-Volume 2, pp. 1324–1331. Morgan Kaufmann Publishers Inc.

Keller, T., & Eyerich, P. (2012). Prost: Probabilistic planning based on UCT. In ICAPS12.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In European Conference
on Machine Learning, pp. 282–293.

Konidaris, G. (2016). Constructing abstraction hierarchies using a skill-symbol loop. The 25th
International Joint Conference on Artificial Intelligence (IJCAI).

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for
MDPs.. In Proceedings of the International Symposium on Artificial Intelligence and Mathe-
matics.

Littman, M., Dean, T., & Kaelbling, L. (1995). On the complexity of solving Markov decision
problems. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 394–402. Citeseer.

Macindoe, O., Kaelbling, L. P., & Lozano-Pérez, T. (2012). POMCoP: Belief space planning
for sidekicks in cooperative games. In Riedl, M., & Sukthankar, G. (Eds.), Proceedings of
the Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE-12, Stanford, California, October 8-12, 2012. The AAAI Press.

Marthi, B., Russell, S. J., Latham, D., & Guestrin, C. (2005). Concurrent hierarchical reinforcement
learning. In IJCAI, pp. 779–785.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. In Advances
in Neural Information Processing Systems, Vol. 10.

Pineau, J., Gordon, G., & Thrun, S. (2003). Policy-contingent abstraction for robust robot control.
In Conference on Uncertainty in Articifical Intelligence (UAI), pp. 477 – 484.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc.

Ravindran, B., & Barto, A. G. (2002). Model minimization in hierarchical reinforcement learning.
In Abstraction, Reformulation, and Approximation, pp. 196–211. Springer.

Ravindran, B., & Barto, A. G. (2003a). Relativized options: Choosing the right transformation. In
ICML, pp. 608–615.

26

MARKOVIAN STATE AND ACTION ABSTRACTIONS FOR MDPS VIA HIERARCHICAL MCTS

Ravindran, B., & Barto, A. G. (2003b). SMDP homomorphisms: An algebraic approach to ab-
straction in semi-markov decision processes. In Gottlob, G., & Walsh, T. (Eds.), IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico, August 9-15, 2003, pp. 1011–1018. Morgan Kaufmann.

Ravindran, B., & Barto, A. G. (2004). Approximate homomorphisms: A framework for non-exact
minimization in markov decision processes. In In Proceedings of the International Confer-
ence on Knowledge Based Computer Systems.

Russell, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2 edition). Pearson
Education.

Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Advances in Neural
Information Processing Systems, pp. 2164–2172.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587), 484–489.

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning without state-estimation in partially ob-
servable Markovian decision processes. In Proceedings of the 11th International Conference
on Machine Learning, pp. 284–292.

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggrega-
tion. Advances in Neural Information Processing Systems, 361–368.

Srivastava, S., Russell, S. J., & Pinto, A. (2016). Metaphysics of planning domain descriptions.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., pp. 1074–1080.

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learning. In International
Symposium on Abstraction, Reformulation, and Approximation, pp. 212–223. Springer.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1), 181–211.

Taylor, J., Precup, D., & Panagaden, P. (2009). Bounding performance loss in approximate mdp
homomorphisms. In Koller, D., Schuurmans, D., Bengio, Y., & Bottou, L. (Eds.), Advances
in Neural Information Processing Systems 21, pp. 1649–1656. Curran Associates, Inc.

Thrun, S. (1999). Monte carlo pomdps.. In NIPS, Vol. 12, pp. 1064–1070.

Vien, N. A., Ertel, W., Dang, V.-H., & Chung, T. (2013). Monte-carlo tree search for bayesian
reinforcement learning. Applied intelligence, 39(2), 345–353.

Vien, N. A., & Toussaint, M. (2014). Hierarchical Monte-Carlo planning. In Proceedings of the
29th AAAI Conference on Artificial.

Winands, M. H., Bjornsson, Y., & Saito, J. (2010). Monte Carlo tree search in lines of action. IEEE
Transactions on Computational Intelligence and AI in Games, 2(4), 239–250.

Wolfe, A. P., & Barto, A. G. (2006). Decision tree methods for finding reusable mdp homomor-
phisms. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, Vol. 21, p. 530. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999.

27

	Introduction
	Background
	MDPs and POMDPs
	Monte Carlo Tree Search
	State Abstraction
	Action Abstraction

	Related Work
	The Main Approach
	State Abstraction within a POMDP Formulation
	Automatic Action Abstraction in Belief Space
	The Main Algorithm

	Theoretical Results
	Optimality Results with State Abstraction
	Convergence Results with Action Abstraction

	Experiments
	Rooms Domain
	Continuous Rooms Domain

	Conclusion
	References

