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MDPs and POMDPs
A Markov decision process (MDP) is a tuple
〈S,A, T,R, γ〉:

• State space: S
• Action space: A
• Transition function: T (s′ | s, a)

• Reward function: R(s, a)

• Discount factor: γ

A partially observable Markov decision process
(POMDP) is a tuple 〈S,A,Z, T,R,Ω, γ〉:

• Underlying MDP: 〈S,A, T,R, γ〉
• Observation space: Z
• Observation function: Ω(z | s, a)

State and Action Abstractions
State abstraction groups a set of states as a unit:

• Ground MDP: M= 〈S,A, T,R, γ〉
• Partition: X = {x1, x2, · · · }
• Abstraction function: ϕ : S → X

• Non-Markovianess: Pr(x′ | x, a)

• Non-Stationary: Pr(s | x)

Figure 1: Rooms domain (L); Non-Markovianess (R)

Action abstraction extends the macro idea to
closed-loop policies:

• Option o: initial and terminal conditions
and an inner policy πo

• Semi MDP: 〈S,O, TO, R, γ〉
• Temporal transition: TO(s′, N | s, o)

Motivation
The safe state abstraction approach:

• Ignore only irrelevant state variables
• Exploit bisimulation/homomorphism
• Not always possible
• Computationally difficult to find

The weighting function approach:

• Approximate Pr(s | x) using w(s, x)

• Superficially ensure Markovianess
• Can not capture the true dynamics
• Pr(s | x) is non-stationary anyway

State Abstraction as a POMDP
State abstraction creates a POMDP:

• Ground MDP: M= 〈S,A, T,R, γ〉
• Partial observability: X as observations
• Obs. function: Ω(x | s) = 1[x = ϕ(s)]

• POMDP(M,ϕ) = 〈S,A,X, T,R,Ω, γ〉
• M -branching factor: |S| × |A|
• POMDP(M,ϕ)-branching factor: |X|×|A|
• POMCP(M,ϕ): POMCP on the POMDP

Action Abstraction with Belief
A given state abstraction naturally induces an
action abstraction:

• Options connect abstract states in a one
high-level step

• E.g., transition from x to y as option ox→y

Hierarchical solution for POMDP(M,ϕ) withO
as the set of options:

• The overall option-selection policy: µ
• Inner policy πo for option o ∈ O
• A set of policies Π = {µ, πo1 , πo2 , · · · }

Value function decomposition:

• V µ(h) = maxoQ
µ(h, o)

• Qµ(h, o) = V πo(h) +
∑
h′∈H γ

|h′|−|h| Pr(h′ |
h, o)V µ(h′)

• V πo(h) = maxaQ
πo(h, a)

• Qπo(h, a) = R(h, a) + γ
∑
x∈X Pr(x |

h, a)V πo(hax)

• POMCP(M,ϕ,O): hierarchical POMCP

Theoretical Results
Theorem 1 In the limit, POMCP(M,ϕ) finds the
optimal policy for ground MDP M consistent with
input state abstraction ϕ.

Definition 1 An aggregation error is defined to
measure the quality of state abstraction in terms of
grouping states with different optimal actions.

Theorem 2 The performance loss in terms of action
values of POMCP(M,ϕ) is bounded by a constant
multiple of the aggregation error.

Theorem 3 In the limit, POMCP(M,ϕ,O) con-
verges to a recursively optimal hierarchical policy for
POMDP(M,ϕ) over the hierarchy defined by state
abstraction ϕ and options O.

References
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Experimental Results
We compare 5 algorithms in ROOMS[17, 17, 4] and ROOMS[25, 13, 8] problems: UCT, UCTϕ,
POMCP(M,ϕ), POMCP(M,ϕ,O) and smart-POMCP(M,ϕ,O). UCT runs directly in the ground
state space; UCTϕ is a UCT algorithm running entirely in the abstract state space following the
weighting function approach; POMCP(M,ϕ) is a POMCP algorithm running on POMDP(M,ϕ);
POMCP(M,ϕ,O) is the proposed hierarchical MCTS algorithm running on POMDP(M,ϕ); smart-
POMCP(M,ϕ,O) is a POMCP(M,ϕ,O) algorithm equipped with hand-coded informative rollout
policies for options. The performance is evaluated using averaged discounted return in terms of the
number of simulations and the averaged computation time per action.
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Figure 2: Experimental results on the rooms domain: ROOMS[17, 17, 4] (L); ROOMS[25, 13, 8] (R).

POMCP(M,ϕ) outperforms UCT, indicating that modeling a ground MDP with state abstraction
as a POMDP and solving it via approximated, search-based online planning algorithms is feasible.
UCTϕ uses the empirical distributions of Pr(s | x) to approximate w(s, x) and finds a memoryless
policy as a mapping from abstract states to actions. It has easily the worst performance in all cases,
confirming that finding memoryless policies might not be the right way to do state abstractions.
POMCP(M,ϕ,O) outperforms UCT by orders of magnitude. POMCP(M,ϕ,O) also outperforms
POMCP(M,ϕ) substantially suggesting that exploiting the hierarchical structure introduced by do-
ing state abstraction contributes the main improvement. With the help of an option-specific rollout
policy, smart-POMCP(M,ϕ,O) improves on POMCP(M,ϕ,O) significantly, indicating the advan-
tage that option-specific heuristic can be added to POMCP(M,ϕ,O).

Conclusions
• We propose state- and action-abstracted MDPs can be viewed as POMDPs
• We bound the performance loss induced by the abstraction
• We describe a hierarchical MCTS algorithm for approximately solving the abstract POMDP
• The algorithm converges to a recursively optimal hierarchical policy for the ground MDP

consistent with the input state and action abstractions
• Empirical results show that the proposed approach improves ground MCTS significantly

Future Work
• Reinforcement learning with features creates a POMDP
• Memoryless policies in feature space lack optimality guarantee
• The non-Markovianess can be overcome by using a POMDP formulation
• The hierarchical structure in feature space can be exploited by hierarchical MCTS


