
Online Planning for Large MDPs with MAXQ
Decomposition

Aijun Bai, Feng Wu, and Xiaoping Chen

Multi-Agent Systems Lab, Department of Computer Science,
University of Science and Technology of China

Hefei, 230026, China
baj@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. Markov decision processes (MDPs) provide an expressive
framework for planning in stochastic domains. However, exactly solv-
ing a large MDP is often intractable due to the curse of dimensionality.
Online algorithms help overcome the high computational complexity by
avoiding computing a policy for each possible state. Hierarchical decom-
position is another promising way to help scale MDP algorithms up to
large domains by exploiting their underlying structure. In this paper,
we present an effort on combining the benefits of a general hierarchi-
cal structure based on MAXQ value function decomposition with the
power of heuristic and approximate techniques for developing an online
planning framework, called MAXQ-OP. The proposed framework pro-
vides a principled approach for programming autonomous agents in a
large stochastic domain. We empirically evaluated our algorithm on the
Taxi problem–a common benchmark for MAXQ–to show the efficiency of
MAXQ-OP. We have also been conducting a long-term case-study with
the RoboCup soccer simulation 2D domain, which is extremely larger
than domains usually studied in the literature, as the major benchmark
to this research. The case-study showed that the agents developed with
this framework and the related techniques reached outstanding perfor-
mances, showing its high scalability to very large domains.

Keywords: MDP, Online Planning, MAXQ, RoboCup 2D

1 Introduction

Markov decision processes (MDPs) have been proved to be a useful model for
planning under uncertainty. Most of the existing approaches, such as linear pro-
gramming, value iteration, and policy iteration [16], solve MDP problems of-
fline. All these algorithms have to find a policy for the entire state space before
actually interacting with the environments. When applying to large domains,
exactly solving MDPs offline is often intractable due to the curse of dimen-
sionality, i.e. the size of state space grows exponentially with the number of
state variables. The very high computational complexity–typically polynomial

in the size of the state space [14]–may make it unacceptable in practice. Fur-
thermore, small changes in the system’s dynamics require recomputing the full
policy, which makes it inapplicable to those domains where their dynamics may
change constantly.

In contrast, online approaches try to alleviate this difficulty by focusing on
computing a policy only for the current state. The key observation is that an
agent could merely encounter a fraction of the overall states during execution.
When interacting with the environment, online algorithms simultaneously eval-
uate all possible actions for the current state and select the “best” one. It recur-
sively perform forward search on the reachable states by evaluating and updating
the policy value in real-time. As shown in RTDP [6], LAO* [9] and UCT [13],
heuristic techniques can be utilized in the search process to reduce time and
memory usage. Online planning algorithms also have an advantage that explicit
representations of policies are not necessary for them, so they can easily handle
a continuous state or action space without discretization. Moreover, online al-
gorithms can easily handle unpredicted dynamics changes, which makes them a
preferable choice in many real-world applications.

Hierarchical decomposition is another well-known method for scaling MDP
algorithms to very large problems. By given a hierarchical structure of the do-
main, it decomposes the original model into a set of subproblems (or subtasks)
that can be more easily solved [4]. This method can benefit from the advantages
of several useful techniques including temporal abstraction, state abstraction and
subtask sharing [8]. In temporal abstraction, temporally-extended actions (also
known as options or macro-actions), which may take numbers of steps to ex-
ecute, are treated as primitive actions by the higher level of subtasks in the
hierarchy. State abstraction aggregates the system states into macro-states by
eliminating irrelevant state variables for subtasks. Subtask sharing allows the
computed policy of one subtask to be reused by some other higher level tasks.

In this paper, we present a novel approach called MAXQ-OP for planning
in stochastic domains modeled as MDPs. It combines the main advantages of
online planning and hierarchical decomposition, namely MAXQ, to solve large
MDPs. Unlike most of the existing MDP algorithms, MAXQ-OP runs the plan-
ning procedure online to find the best policy merely for the current step. In
MAXQ-OP, only small parts of the policy space starting from the current state
are visited. This is more efficient than the offline solutions, especially for large
problems where computing the complete policy for every state is intractable.
Another strength of MAXQ-OP is the ability to utilize hierarchical structures
of the problems. In many real-world applications, such a hierarchical structure
exists and can be used to speed up the planning. The key contribution of this
paper lies in the overall framework for exploiting the hierarchical structure on-
line and the approximation made for computing the completion function. We
empirically evaluated our algorithm on the Taxi problem–a common benchmark
for MAXQ–to show the efficiency of MAXQ-OP. We also performed a case-study
on a very large domain–RoboCup soccer simulation 2D–to test the scalability of

MAXQ-OP. The empirical results confirmed the advantage of MAXQ-OP over
existing approaches in the literature.

The remainder of this paper is organized as follows. Section 2 introduces
background knowledge on Markov decision processes and MAXQ hierarchical
decomposition. Section 3 describes our MAXQ-OP solution in details. Section 4
show the empirical results on Taxi domain, and Section 5 presents a case-study
in RoboCup soccer simulation 2D domain. Finally, in Section 6, the paper is
concluded with some discussion of the future work.

2 Background

In this section, we briefly review the MDP model [16] and the MAXQ hierarchical
decomposition method [8].

2.1 MDP Framework

Formally, an MDP is defined as a tuple 〈S,A, P,R〉, where:

– S is a set of possible states of the environment.
– A is a set of actions to be performed by the agent.
– P : S×A×S → [0, 1] is the transition function with P (s′|s, a) denoting the

probability of transition to state s′ after performing action a at state s.
– R : S × A→ R is the reward function with R(s, a) denoting the immediate

reward that the agent would received after performing action a at state s.

A policy is a mapping from states to actions π : S → A, with π(s) denoting
the action to be taken at state s. The value function V π(s) of a policy π is
defined as the expected cumulative reward received by following π:

V π(s) = E

[∞∑
t=0

γtR(st, π(st))

]

where γ ∈ (0, 1] is a discount factor. Similarly, the Q-function Qπ(s, a) is defined
as the expected value by performing action a at state s and following π thereafter:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V π(s′). (1)

Solving an MDP is equivalent to looking for an optimal policy π∗ such that
V π∗

(s) ≥ V π(s) for all s ∈ S and any policy π. The optimal value function,
denoted by V ∗(s), satisfes the following Bellman equation:

V ∗(s) = max
a∈A

Q∗(s, a). (2)

Then the optimal policy π∗ is, for all s ∈ S:

π∗(s) = argmax
a∈A

Q∗(s, a). (3)

Fig. 1. An example of MAXQ task graph

In many real-world applications, there exists a pre-specified set of goal states,
G ⊂ S. These states are typically absorbing states which: for every g ∈ G
and a ∈ A, P (g, a, g) = 1 and R(g, a) = 0. In this paper, we concentrate on
undiscounted (γ = 1) goal-directed MDPs (also sometimes referred as stochastic
shortest path problems [5]). It is shown that any MDP can be transformed into
an equivalent undiscounted negative goal-directed MDP where the reward for
non-goal states is strictly negative [2]. So undiscounted goal-directed MDP is
actually a general formulation.

2.2 MAXQ Hierarchical Decomposition

Generally, the MAXQ technique decomposes a given MDP M into a set of sub-
MDPs arranged over a hierarchical structure, denoted by {M0,M1, · · · ,Mn}.
Each sub-MDP is treated as a distinct subtask. Specifically, M0 is the root sub-
task which means solving M0 solves the original MDP M . An unparameterized
subtask Mi is defined as a tuple 〈Ti, Ai, R̃i〉, where

– Ti is the termination predicate that defines a set of active states Si, and a
set of terminal states Gi for subtask Mi.

– Ai is a set of actions that can be performed to achieve subtask Mi, which
can either be primitive actions from M , or refer to other subtasks.

– R̃i is the optional pseudo-reward function which specifies pseudo-rewards for
transitions from active states Si to terminal states Gi.

It is worth pointing out that if a subtask has task parameters, then different
binding of the parameters, may specify different instances of a subtask. Prim-
itive actions are treated as primitive subtasks such that they are always exe-
cutable, and will terminate immediately after execution. For primitive subtasks,
the pseudo-reward function is uniformly zero. This hierarchical structure can
be represented as a directed acyclic graph called the task graph. An example is
shown in Figure 1, where M0 is the root task with three children M1, M2, and
M3, which are subtasks sharing the lower-level primitive subtasks Mi (4 ≤ i ≤ 8)
as their actions.

Given the hierarchical structure, a hierarchical policy π is defined as a set
of policies for each subtask π = {π0, π1, · · · , πn}, where πi is a mapping from
active states to actions πi : Si → Ai. The projected value function of policy π for
subtask Mi in state s, V π(i, s), is defined as the expected value after following

policy π at state s until the subtask Mi terminates at one of its terminal states
in Gi. Similarly, Qπ(i, s, a) is the expected value by firstly performing action Ma

at state s, and then following policy π until the termination of Mi. It is worth
noting that V π(a, s) = R(s, a) if Ma is a primitive action a ∈ A.

Dietterich [8] has shown that the value function of policy π can be expressed
recursively as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (4)

where

V π(i, s) =

{
R(s, i) if Mi is primitive
Qπ(i, s, π(s)) otherwise

(5)

Cπ(i, s, a) is the completion function that estimates the cumulative reward re-
ceived with the execution of action Ma before completing the subtask Mi, as
defined below:

Cπ(i, s, a) =
∑
s′,N

γNP (s′, N |s, a)V π(i, s′), (6)

where P (s′, N |s, a) is the probability that subtask Ma at s terminates at state
s′ after N steps.

A recursively optimal policy π∗ can be found by recursively computing the
optimal projected value function as:

Q∗(i, s, a) = V ∗(a, s) + Cπ∗
(i, s, a), (7)

where

V ∗(i, s) =

{
R(s, i) if Mi is primitive
maxa∈Ai Q

∗(i, s, a) otherwise
. (8)

Then π∗
i for subtask Mi can be given by, for all s ∈ Si:

π∗
i (s) = argmax

a∈Ai

Q∗(i, s, a). (9)

3 Online Planning with MAXQ

In this section, we explain in details how our MAXQ-OP solution works. As men-
tioned above, MAXQ-OP is a novel online planning approach that incorporates
the power of the MAXQ decomposition to efficiently solve large MDPs.

3.1 Overview of MAXQ-OP

In general, online planning interleaves planning with execution and chooses the
best action for the current step. Given the MAXQ hierarchy of an MDP, M =
{M0,M1, · · · ,Mn}, the main procedure of MAXQ-OP evaluates each subtask by
forward search to compute the recursive value functions V ∗(i, s) and Q∗(i, s, a)
online. This involves a complete search of all paths through the MAXQ hierarchy
starting from the root task M0 and ending with some primitive subtasks at the
leaf nodes. After the search process, the best action a ∈ A0 is selected for the root

Algorithm 1: OnlinePlanning()

Input: an MDP model with its MAXQ hierarchical structure
Output: the accumulated reward r after reaching a goal
r ← 0;1

s← GetInitState();2

while s 6∈ G0 do3

〈v, ap〉 ← EvaluateState(0, s, [0, 0, · · · , 0]);4

r ← r+ ExecuteAction(ap, s);5

s← GetNextState();6

return r;7

Algorithm 2: EvaluateState(i, s, d)

Input: subtask Mi, state s and depth array d
Output: 〈V ∗(i, s), a primitive action a∗

p〉
if Mi is primitive then return 〈R(s,Mi),Mi〉;1

else if s 6∈ Si and s 6∈ Gi then return 〈−∞, nil〉;2

else if s ∈ Gi then return 〈0, nil〉;3

else if d[i] ≥ D[i] then return 〈HeuristicValue(i, s), nil〉;4

else5

〈v∗, a∗
p〉 ← 〈−∞, nil〉;6

for Mk ∈ Subtasks(Mi) do7

if Mk is primitive or s 6∈ Gk then8

〈v, ap〉 ← EvaluateState(k, s, d);9

v ← v+ EvaluateCompletion(i, s, k, d);10

if v > v∗ then11

〈v∗, a∗
p〉 ← 〈v, ap〉;12

return 〈v∗, a∗
p〉;13

task M0 based on the recursive Q function. Meanwhile, the true primitive action
ap ∈ A that should be performed first can also be determined. This action ap
will be executed to the environment, leading to a transition of the system state.
Then, the planning procedure starts over to select the best action for the next
step.

As shown in Algorithm 1, state s is initialized by GetInitState and the func-
tion GetNextState returns the next state of the environment after ExecuteAction
is performed. It executes a primitive action to the environment and returns a
reward for running that action. The main process loops over until a goal state
in G0 is reached. Obviously, the key procedure of MAXQ-OP is EvaluateState,
which evaluates each subtask by depth-first search and returns the best action
for the current state. Section 3.2 will explain EvaluateState in more detail.

3.2 Task Evaluation over Hierarchy

In order to choose the best action, agent must compute a Q function for each
possible action at the current state s. Typically, this will form a search tree
starting from s and ending with the goal states. The search tree is also known as
an AND-OR tree where the AND nodes are actions and the OR nodes are states.
The root node of such an AND-OR tree represents the current state. The search
in the tree is processed in a depth-first fashion until a goal state or a certain
pre-determined fixed depth is reached. When it reaches the depth, a heuristic is
often used to evaluate the long term value of the state at the leaf node.

When the task hierarchy is given, it is more difficult to perform such search
procedure since each subtask may contain other subtasks or several primitive
actions. As shown in Algorithm 2, the search starts with the root task Mi and
the current state s. Then, the node of the current state s is expanded by trying
each possible subtask of Mi. This involves a recursive evaluation of the subtasks
and the subtask with the highest value is selected. As mentioned in Section 2.2,
the evaluation of a subtask requires the computation of the value function for
its children and the completion function. The value function can be computed
recursively. Therefore, the key challenge is to calculate the completion function.

Intuitively, the completion function represents the optimal value of fulfilling
the task Mi after executing a subtask Ma first. According to Equation 6, the
completion function of an optimal policy π∗ can be written as:

Cπ∗
(i, s, a) =

∑
s′,N

γNP (s′, N |s, a)V π∗
(i, s′) (10)

where

P (s′, N |s, a) =
∑

〈s,s1,...,sN−1〉 P (s1|s, π∗
a(s)) · P (s2|s1, π∗

a(s1))

· · ·P (s′|sN−1, π
∗
a(sN−1)).

More precisely, 〈s, s1, . . . , sN−1〉 is a path from the state s to the terminal state s′

by following the optimal policy π∗
a ∈ π∗. It is worth noticing that π∗ is a recursive

policy constructed by other subtasks. Obviously, computing the optimal policy
π∗ is equivalent to solving the entire problem. In principle, we can exhaustively
expand the search tree and enumerate all possible state-action sequences starting
with s, a and ending with s′ to identify the optimal path. Obviously, this may
be inapplicable for large domains. In Section 3.3, we will present a more efficient
way to approximate the completion function.

Algorithm 2 summarizes the major procedures of evaluating a subtask. Clearly,
the recursion will end when: 1) the subtask is a primitive action; 2) the state is
a goal state or a state outside the scope of this subtask; or 3) a certain depth
is reached, i.e. d[i] ≥ D[i] where d[i] is the current forward search depth and
D[i] is the maximal depth allowed for subtask Mi. It is worth pointing out, dif-
ferent maximal depths are allowed for each subtask. Higher level subtasks may
have smaller maximal depth in practice. If the subtask is a primitive action,
the immediate reward will be returned as well as the action itself. If the search

Algorithm 3: EvaluateCompletion(i, s, a, d)

Input: subtask Mi, state s, action Ma and depth array d
Output: estimated C∗(i, s, a)
G̃a ← ImportanceSampling(Ga, Da);1

v ← 0;2

for s′ ∈ G̃a do3

d′ ← d;4

d′[i]← d′[i] + 1;5

v ← v + 1

|G̃a|
EvaluateState(i, s′, d′);6

return v;7

reaches a certain depth, it also returns with a heuristic value for the long-term
reward. In this case, a nil action is also returned, but it will never be chosen by
higher level subtasks. If none of the above conditions holds, it will loop over and
evaluate all the children of this subtask recursively.

3.3 Completion Function Approximation

To exactly compute the optimal completion function, Cπ∗
(i, s, a), the agent must

know the optimal policy π∗ first which is equivalent to solving the entire problem.
However, it is intractable to find the optimal policy online due to the time
constraint. When applying MAXQ-OP to large problems, approximation should
be made to compute the completion function for each subtask. One possible
solution is to calculate an approximate policy offline and then to use it for
the online computation of the completion function. However, it may be also
challenging to find a good approximation of the optimal policy if the domain is
very large.

Notice that the term γN in Equation 6 is equal to 1 when γ = 1, which is the
default setting of this paper. Given an optimal policy, the subtask will terminate
at a certain goal state with the probability of 1 after several steps. To compute
the completion function, the only term need to be considered is P (s′, N |s, a)–a
distribution over the terminal states. Given a subtask, it is often possible to
directly approximate the distribution disregarding the detail of execution.

Based on these observations, we assume that each subtask Mi will terminate
at its terminal states in Gi with a prior distribution of Di. In principle, Di can be
any probability distribution associated with each subtask. Denoted by G̃a a set
of sampled states drawn from prior distribution Da using importance sampling
[19] techniques, the completion function C∗(i, s, a) can be approximated as:

C∗(i, s, a) ≈ 1

|G̃a|

∑
s′∈G̃a

V ∗(i, s′). (11)

A recursive procedure is proposed to estimate the completion function, as shown
in Algorithm 3. In practice, the prior distribution Da–a key distribution when

Algorithm 4: NextAction(i, s)

Input: subtask index i and state s
Output: selected action a∗

if SearchStopped(i, s) then1

return nil;2

else3

a∗ ← argmaxa∈Ai
Hi[s, a] + c

√
lnNi[s]
Ni[s,a]

;4

Ni[s]← Ni[s] + 1;5

Ni[s, a
∗]← Ni[s, a

∗] + 1;6

return a∗;7

computing the completion function, can be improved by considering the domain
knowledge. Take the robot soccer domain for example. The agent at state s may
locate in a certain position of the field. Suppose s′ is the goal state of successfully
scoring the ball. Then, the agent may have higher probability to reach s′ if it
directly dribbles the ball to the goal or passes the ball to some teammates who
is near the goal, which is specified by the action a in the model.

3.4 Heuristic Search in Action Space

For some domains with large action space, it may be very time-consuming to
enumerate all possible actions (subtasks) exhaustively. Hence it is necessary to
introduce some heuristic techniques (including prune strategies) to speed up the
search process. Intuitively, there is no need to evaluate those actions that are
not likely to be better. In MAXQ-OP, this is done by implementing a iterative
version of Subtasks function using the NextAction procedure which dynami-
cally selects the most promising action to be evaluated next with the tradeoff
between exploitation and exploration. Different heuristic techniques can be used
for different subtasks, such as hill-climbing, gradient ascent, branch and bound,
etc.

Algorithm 4 gives an UCB1 [1] version of NextAction, where Ni[s] and
Ni[s, a] denote the visitation count for state s and state-action pair (s, a) re-

spectively for subtask Mi. In Algorithm 4, c
√

lnNi[s]
Ni[s,a]

is a biased bonus with

higher value for rarely-tried actions in order to encourage exploration on them.
c is a constant variable that balances the tradeoff between exploitation and ex-
ploration. The procedure SearchStopped dynamically determines whether the
search process for current task should be terminated based on some prune strate-
gies. Hi[s, a] is the heuristic value for action a in state s for each subtask Mi,
which are initialized according to some prior domain knowledge for each subtask.
They will be updated incrementally while the agent interacting with the envi-
ronment according to a gradient rule, Hi[s, a]← Hi[s, a]+α(Q(i, s, a)−Hi[s, a]),
which is commonly used in reinforcement learning algorithms [18].

(a) (b)

Fig. 2. (a) Taxi domain, and (b) MAXQ task graph for Taxi

4 Experiments: Taxi Domain

The Taxi domain is a common benchmark for planning and learning under un-
certainty [8]. As illustrated in Figure 2(a), it consists of a 5× 5 grid world with
walls and 4 taxi terminals, named R, G , Y and B . The goal of the taxi agent
is to pick up a and deliver a passenger. The system has 4 state variables: the
agent’s coordination x and y, the pickup location pl , and the destination dl . The
variable pl can be one of the 4 terminals, or just taxi if the passenger is inside
the taxi. The variable dl must be one of the 4 terminals. In our experiments, pl
is not allowed to be dl . Therefore, this problem has totally 400 states with 25
taxi locations, 5 passenger locations, and 4 destination locations, excluding those
states where pl = dl . This is identical to the setting of [10]. At the beginning
of each episode, the taxi’s location, the passenger’s location and the passenger’s
destination are all randomly chosen. It terminates when successfully delivering
the passenger. There are 6 primitive actions: a) 4 navigation actions that move
the agent one grid: North, South, East and West; b) the Pickup action; and c) the
Putdown action. Each navigation action has the probability of 0.8 to move the
agent in the indicated direction, and 0.1 for each perpendicular direction. Each
action has a cost of -1, and the agent received a reward of +20 when the episode
terminates with the Putdown action and a penalty of -10 for illegal Pickup and
Putdown actions.

When applying MAXQ-OP to this domain, we used the same MAXQ hier-
archical structure as presented in [8] shown in Figure 2(b). Note that the Nav(t)
subtask takes a parameter of t with the value of either R, G , Y or B . The
definition of the non-primitive subtasks is shown in Table 1. The “Irrelevant
Variables” gives the state variables that can be ignored when applying state
abstractions for each subtask, whilst the “Max Depth” specifies the pre-defined
maximal forward search depths for each subtask used in the experiments.

The EvaluateCompletion procedure was implemented as follows. For high
level subtasks such as Root, Get, Put and Nav(t), we assumed that they will
terminate in the terminal states with the probability of 1 and for primitive sub-
tasks such as North, South, East and West, the domain’s underlying transition
model P (s, a, s′) is used to sample the most likely state according to its transi-

Table 1. Non-primitive subtasks for Taxi domain

Subtask Active States Terminal States Actions Max Depth

Root all states pl = dl Get and Put 2

Get pl 6= taxi pl = taxi Nav(t) and Pickup 2

Put pl = taxi pl = dl Nav(t) and Putdown 2

Nav(t) all states (x, y) = t North, South, East and West 7

tion probability. For each non-primitive subtask, the HeuristicValue function
was designed as the sum of the negative of a Manhattan distance from the taxi’s
current location to the terminal state’s location and other potential immedi-
ate rewards. For example, the heuristic value for the Get subtask is defined as
−Manhattan((x, y), pl) −1, where Manhattan((x1, y1), (x2, y2)) gives the Man-
hattan distance: |x1 − x2|+ |y1 − y2|.

To speed up the search process, a cache-based strategy is implemented to
prune unnecessary actions while searching in the action space of each subtask.
More precisely, if state s has been evaluated for subtask Mi with depth d[i] = 0,
assuming the result is 〈v, ap〉, then this result will be stored in a cache table as:

cache[i, abstract(i, s)]← 〈v, ap〉

where cache is the cache table, and abstract(i, s) gives the abstracted form of
state s for subtask Mi. Next time when the evaluation value of state s under the
same condition is requested, then the cached result will be returned immediately
with the probability of 0.9.

In our experiments, we ran several trials for each algorithm with a random
initial state, and reported the averaged value (accumulated reward). We com-
pared our MAXQ-OP algorithm with the R-MAXQ and MAXQ-Q algorithms
presented in [10], which are the best existing MAXQ hierarchical decomposi-
tion algorithms we can find in the literature. It is not totally fair comparison
since both R-MAXQ and MAXQ-Q are reinforcement learning algorithms. How-
ever, these comparisons empirically confirmed the soundness of MAXQ-OP for
its ability to exploit the hierarchical structure. Additionally, we developed an
asynchronous value iteration algorithm to solve the flat-represented problem
optimally. This output the upper bound–the maximal value that planning algo-
rithms can achieve–of this domain to show the quality of our approximation.

It can be seen from Table 2 that our MAXQ-OP algorithm is able to find
the near-optimal policy of the Taxi domain online with the value of 3.93± 0.16,
very close to the optimal value 4.01 ± 0.15. The value achieved by MAXQ-OP
is also very competitive to R-MAXQ and MAXQ-Q. In summary, this set of
experiments demonstrates the superior performance of MAXQ-OP in the Taxi
benchmark domain.

Table 2. Empirical results of Taxi domain

Algorithm Trials Average Rewards∗ Offline Time Avg. Online Time

MAXQ-OP 1000 3.93± 0.16 - 0.20± 0.16 ms

R-MAXQ 100 3.25± 0.50 1200± 50 episodes -

MAXQ-Q 100 0.0± 0.50 1600 episodes -
∗The upper bound of Average Rewards is 4.01± 0.15 averaged over 1000 trials.

5 Case Study: RoboCup 2D

It is our long-term effort to apply the MAXQ-OP framework to the RoboCup
soccer simulation 2D domain [12, 15], a very large testbed for the research of
decision-theoretic planning. In this section, we present a case-study of this do-
main and evaluate the performance of MAXQ-OP based on the general com-
petition results with several high-quality teams in the RoboCup simulation 2D
community. The goal is to test the scalability of MAXQ-OP and shows that it
can solve large real-world problems that are previously intractable.

5.1 Introduction to RoboCup 2D

In RoboCup 2D, a central server simulates a 2-dimensional virtual soccer field
in real-time. Two teams of fully autonomous agents connect to the server via
network sockets to play a soccer game over 6000 steps. Each team consists of 11
soccer player agents, each of which interacts independently with the server by
1) receiving a set of observations; 2) making a decision; and 3) sending actions
back to the server. Observations for each player only contain noisy and local
geometric information such as the distance and angle to other players, ball,
and field markings within its view range. Actions are atomic commands such as
turning the body or neck to an angle, dashing in a given direction with certain
power, kicking the ball to an angle with power, or slide tackling the ball. The
key challenge lies in the fact that it is a fully distributed, multi-agent stochastic
domain with continuous state, action and observation space [17]. More details
about RoboCup 2D can be found at the official website.1

5.2 RoboCup 2D as an MDP

In this section, we present the technical details on modeling the RoboCup 2D
domain as an MDP. As mentioned, it is a partially-observable multi-agent do-
main with continuous state and action space. To model it as a fully-observable
single-agent MDP, we specify the state and action spaces and the transition and
reward functions as follows:

State Space We treat teammates and opponents as part of the environment
and try to estimate the current state with sequences of observations. Then, the
state of 2D domain can be represented as a fixed-length vector, containing state

1 http://wiki.robocup.org/wiki/Soccer Simulation League

variables that totally cover 23 distinct objects (10 teammates, 11 opponents, the
ball, and the agent itself).

Action SpaceAll primitive actions, like dash, kick, tackle, turn and turn neck,
are originally defined by the 2D domain. They all have continuous parameters,
resulting a continuous action space.

Transition Function Considering the fact that autonomous teammates and
opponents make the environment unpredictable, the transition function is not
obvious to represent. In our team, the agent assumes that all other players share
a same predefined behavior model: they will execute a random kick if the ball
is kickable for them, or a random walk otherwise. For primitive actions, the
underlying transition model for each atomic command is fully determined by
the server as a set of generative models.

Reward Function The underlying reward function has a sparse property:
the agent usually earns zero rewards for thousands of steps before any scoring
happens. If this underlying reward function is used directly, then the forward
search process may often terminate without any real rewards obtained, and thus
can not tell the differences between subtasks. In our team, to emphasize each
subtask’s characteristic and to guarantee that positive results can be found by
the search process, a set of pseudo-reward functions is developed for each subtask.

To estimate the size of the state space, we ignore some secondary variables
for simplification (such as heterogeneous parameters and stamina information).
Totally 4 variables are needed to represent the ball’s state including position
(x, y) and velocity (vx, vy). In addition with (x, y) and (vx, vy), two more vari-
ables are used to represent each player’s state including body direction db, and
neck direction dn. Therefore the full state vector has a dimensionality of 136.
All these state variables have continuous values, resulting a high-dimensional
continuous state space. If we discretize each state variable into 103 uniformly
distributed values in its own field of definitions, then we obtain a simplified
state space with 10408 states, which is extremely larger than domains usually
studied in the literature.

To model the RoboCup 2D domain as an MDP which assumes that the
environment’s state is fully observable, the agent must overcome the difficulty
that it can only receive local and noisy observations, to obtain a precise enough
estimation of the environment’s current state. In our team, the agent estimates
the current state from its belief [11]. A belief b is a probability distribution over
state space, with b(s) denoting the probability that the environment is actually
in state s. We assume conditional independence between individual objects, then
the belief b(s) can be expressed as

b(s) =
∏

0≤i≤22

bi(s[i]), (12)

where s is the full state vector, s[i] is the partial state vector for object i, and
bi(s[i]) is the marginal distribution for s[i]. A set of mi weighted samples (also
known as particles) are then used to approximate bi as:

bi(s[i]) ≈ {xij , wij}j=1...mi , (13)

Fig. 3. MAXQ task graph for our team

where xij is a sampled state for object i, and wij represents the approximated
probability that object i is in state xij (obviously

∑
1≤j≤mi

wij = 1).
In the beginning of each step, these samples are updated by Monte Carlo

procedures using the domain’s motion model and sensor model [7]. Finally, the
environment’s current state s is estimated as:

s[i] =
∑

1≤j≤mi

wijxij . (14)

Based on empirical results taken from actual competitions, the estimated
state is sufficient for the agent to make good decisions, particularly for the state
of the agent itself and other close objects.

5.3 Solution with MAXQ-OP

In this section, we describe how to apply MAXQ-OP to the RoboCup soccer
simulation domain. Firstly, a series of subtasks at different levels are defined as
the building blocks of constructing the MAXQ hierarchy, listed as follows:

– kick, turn, dash, and tackle: They are low-level parameterized primitive ac-
tions originally defined by the soccer server. A reward of -1 is assigned to
each primitive action to guarantee that the optimal policy will try to reach
a goal as fast as possible.

– KickTo, TackleTo, and NavTo: In the KickTo and TackleTo subtask, the goal
is to kick or tackle the ball to a given direction with a specified velocity,
while the goal of the NavTo subtask is to move the agent from its current
location to a target location.

– Shoot, Dribble, Pass, Position, Intercept, Block, Trap, Mark, and Formation:
These subtasks are high-level behaviors in our team where: 1) Shoot is to
kick out the ball to score; 2) Dribble is to dribble the ball in an appropriate
direction; 3) Pass is to pass the ball to a proper teammate; 4) Position is to
maintain the teammate formation for attacking; 5) Intercept is to get the ball
as fast as possible; 6) Block is to block the opponent who controls the ball;
7) Trap is to hassle the ball controller and wait to steal the ball; 8) Mark is to
mark related opponents; 9) Formation is to maintain formation for defense.

– Attack and Defense: Obviously, the goal of Attack is to attack opponents to
score while the goal of Defense is to defense against opponents.

– Root: This is the root task. It firstly evaluate the Attack subtask to see
whether it is ready to attack, otherwise it will try the Defense subtask.

The graphical representation of the MAXQ hierarchical structure is shown
in Figure 3, where a parenthesis after a subtask’s name indicates this subtask
will take parameters. It is worth noting that state abstractions are implicitly
introduced by this hierarchy. For example in the NavTo subtask, only the agent’s
own state variables are relevant. It is irrelevant for the KickTo and TackleTo
subtasks to consider those state variables describing other players’ states. To
deal with the large action space, heuristic methods are critical when applying
MAXQ-OP. There are many possible candidates depending on the characteristic
of subtasks. For instance, hill-climbing is used when searching over the action
space of KickTo for the Pass subtask and A* search is used when searching over
the action space of dash and turn for the NavTo subtask.

As mentioned earlier, the method for approximating the completion function
is crucial for the performance when implementing MAXQ-OP. In RoboCup 2D,
it is more challenging to compute the distribution because: 1) the forward search
process is unable to run into an sufficient depth due to the online time constraint;
and 2) the future states are difficult to predict due to the uncertainty of the en-
vironment, especially the unknown behaviors of the opponent team. To estimate
the distribution of reaching a goal, we used a variety techniques for different
subtasks based on the domain knowledge. Take the Attack subtask for example.
A so-called impelling speed is used to approximate the completion probability.
It is formally defined as:

impelling speed(s, s′, α) =
dist(s, s′, α) + pre dist(s′, α)

step(s, s′) + pre step(s′)
(15)

where α is a given direction (called aim-angle), dist(s, s′, α) is the ball’s running
distance in direction α from state s to state s′, step(s, s′) is the estimated steps
from state s to state s′, pre dist(s′) estimates final distance in direction α that
the ball can be impelled forward starting from state s′, and pre step(s′) esti-
mates the respective steps. The aim-angle in state s is determined dynamically
by aim angle(s) function. The value of impelling speed(s, s′, aim angle(s)) in-
dicates the fact that the faster the ball is moved in a right direction, the more
attack chance there would be. In practice, it makes the team attack more effi-
cient. As a result, it can make a fast score within tens of steps in the beginning
of a match. Different definitions of the aim angle function can produce substan-
tially different attack styles, leading to a very flexible and adaptive strategy,
particularly for unfamiliar teams.

5.4 Empirical Evaluation

To test how the MAXQ-OP framework affects our team’s final performance, we
compared three different versions of our team, including:

– Full: This is exactly the full version of our team, where a complete MAXQ-
OP online planning framework is implemented as the key component.

– Random: This is nearly the same as Full, except that when the ball is
kickable for the agent and the Shoot behavior finds no solution, the Attack
behavior randomly chooses a macro-action to perform between Pass and
Dribble with uniform probability.

– Hand-coded: This is similar to Random, but instead of a random selection
between Pass and Dribble, a hand-coded strategy is used. With this strategy,
if there is no opponent within 3m from the agent, then Dribble is chosen;
otherwise, Pass is chosen.

Notice that the only difference between Full, Random and Hand-coded is
the locale selection strategy between Pass and Dribble in the Attack behavior. In
Full, this selection is automatically based on the value function of subtasks (i.e.
the solutions found by EvaluateState(Pass, ·, ·) and EvaluateState(Dribble, ·, ·)
in the MAXQ-OP framework). Although Random and Hand-coded have a dif-
ferent selection strategy, they still have the same subtasks of Attack, including
Shoot, Pass, Dribble, and Intercept, as that of Full.

For each version of our team, we use an offline coach (also known as a trainer)
to independently run the team against the Helios11 binary (which has partici-
pated in RoboCup 2011 and won the second place) for 100 episodes. Each episode
begins with a fixed scene (i.e. the full state vector) taken from a real match of our
team in RoboCup 2011, and ends when: 1) our team scores a goal, denoted as
success; or 2) the ball’s x coordination is smaller than -10, denoted as failure;
or 3) the episode lasts longer than 200 cycles, denoted as timeout. It is worth
mentioning that although all of the episode begin with the same scene, none of
them is identical because of random noise added by the soccer server.

The selected scene, which is originally located at cycle #3142 of that match, is
depicted in Figure 4 where white circles represent our players, gray ones represent
opponents, and the small black one represents the ball. We can see that our player
10 was holding the ball at that moment, while 9 opponents (including goalie)
were blocking just in front of their goal area. In RoboCup 2011, our player 10
passed the ball directly to teammate 11. Having got the ball, our player 11
decided to pass the ball back to teammate 10. When teammate 11 had moved
to an appropriate position, the ball was passed again to it. Finally, teammate
11 executed a tackle to shoot at cycle #3158 and scored a goal 5 cycles later.

Table 3 summarizes the test results showing that the Full version of our
team outperforms both Random and Hand-coded with an increase of the
chance of sucess by 87% and 65% respectively. We find that although Full,
Random and Hand-coded have the same hierarchical structure and subtasks
of Attack, the local selection strategy between Pass and Dribble plays a key role
in the decision of Attack and affects the final performance substantially. It can be
seen from the table that MAXQ-OP based local selection strategy between Pass
and Dribble is sufficient for the Attack behavior to achieve a high performance.
Recursively, this is also true for other subtasks over the MAXQ hierarchy, such

Fig. 4. A selected scene from a real match in RoboCup 2011

Table 3. Empirical results of our team in episodic scene test

Version Episodes Success Failure Timeout

Full 100 28 31 41

Random 100 15 44 41

Hand-coded 100 17 38 45

as Defense, Shoot, Pass, etc. To conclude, MAXQ-OP is able to be the key to
sucess of our team in this episodic scene test.

We also tested the Full version of our team in full games against 4 high-
quality RoboCup 2D opponent teams, namely BrainsStomers08, Helios10, He-
lios11 and Oxsy11. Notice that BrainStormers08 and Helios10 were the champion
of RoboCup 2008 and RoboCup 2010 respectively. In the experiments, we in-
dependently ran our team against the binary codes officially released by them
for 300 games on exactly the same hardware. Table 4 summarizes the detailed
empirical results with our winning rate, which is defined as p = n/N , where n is
the number of games we won, and N is the total number of games. It can be seen
from the table that our team with the implementation of MAXQ-OP substan-
tially outperforms other tested teams. Specifically, our team had about 82.16%,
93.15%, 83.33% and 91.32% of the chances to win BrainsStomers08, Helios10,
Helios11 and Oxsy11 respectively. Table 5 summarizes the general performance
of our team with MAXQ-OP in the RoboCup competitions of past 7 years.
Competition logfiles can be found at the official website.2

There are multiple factors contributing to the general performance of a
RoboCup 2D team. It is our observation that our team benefits greatly from the
abstraction we made for the actions and states. The key advantage of MAXQ-OP
in our team is to provide a formal framework for conducting the search process
over a task hierarchy. Therefore, the team can search for a strategy-level solution
automatically online by given the pre-defined task hierarchy. To the best of our
knowledge, most of the current RoboCup teams develop their team based on
hand-coded rules and behaviors. Overall, the goal of this case-study is twofold:

2 http://ssl.robocup-federation.org/ftp/2d/log/

Table 4. Empirical results of our team in full games

Opponent Team Games Avg. Goals Avg. Points Winning Rate

BrainsStomers08 300 3.09 : 0.82 2.59 : 0.28 82.16± 4.33%

Helios10 300 4.30 : 0.88 2.84 : 0.11 93.15± 2.86%

Helios11 300 3.60 : 1.09 2.60 : 0.30 83.33± 4.22%

Oxsy11 300 4.97 : 1.33 2.79 : 0.16 91.32± 3.19%

Table 5. History results of our team in RoboCup annual competitions

Competitions Games Points Goals Win Draw Lost Avg. Points Avg. Goals

RoboCup 2005 19 47 84 : 16 15 2 2 2.47 4.42 : 0.84

RoboCup 2006 14 38 57 : 6 12 2 0 2.71 4.07 : 0.43

RoboCup 2007 14 34 125 : 9 11 1 2 2.42 8.92 : 0.64

RoboCup 2008 16 40 74 : 18 13 1 2 2.50 4.63 : 1.13

RoboCup 2009 14 36 81 : 17 12 0 2 2.57 5.79 : 1.21

RoboCup 2010 13 33 123 : 7 11 0 2 2.54 9.47 : 0.54

RoboCup 2011 12 36 151 : 3 12 0 0 3.00 12.6 : 0.25

1) it demonstrates the scalability and efficiency of MAXQ-OP for solving a large
real-world application such as RoboCup soccer simulation 2D; 2) it presents a
decision-theoretic solution for developing a RoboCup soccer team, which is more
general and easy for programming high-level strategies.

6 Conclusions

This paper presents MAXQ-OP–a novel online planning algorithm that bene-
fits from both the advantage of hierarchical decomposition and the power of
heuristics. It recursively expands the AND-OR tree online and searches over the
policy space by following the pre-defined task hierarchy. This is more efficient
since only relevant states and actions are considered according to the MAXQ hi-
erarchy. Another contribution of this work is approximate the prior distribution
when computing the completion function. The key observation is that the prior
distribution can be specified based on the task hierarchy as well as the domain
knowledge of this task. By given such prior distributions, MAXQ-OP can eval-
uate the root task online without actually computing the sub-policy for every
subtask. Similar to our work, Barry et al. proposed an offline algorithm called
DetH* [3] to solve large MDPs hierarchically by assuming that the transitions
between macro-states are totally deterministic. In contrast, we assume a prior
distribution over the terminal states of each subtask, which is more realistic.
The empirical results show that MAXQ-OP is able to find a near-optimal policy
online for the Taxi domain and solve a very large problem such as the RoboCup
2D that are previously intractable in the literature of the decision-theoretic plan-
ning. This demonstrates the soundness and stability of MAXQ-OP for solving
large MDPs with the pre-defined task hierarchy. In the future, we plan to theo-

retically analyze MAXQ-OP with different task priors and try to generate these
priors automatically.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

2. J. Barry. Fast Approximate Hierarchical Solution of MDPs. PhD thesis, Mas-
sachusetts Institute of Technology, 2009.

3. J. Barry, L. Kaelbling, and T. Lozano-Perez. Deth*: Approximate hierarchical
solution of large markov decision processes. In International Joint Conference on
Artificial Intelligence, pages 1928–1935, 2011.

4. A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(4):341–379, 2003.

5. D. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 1996.
6. B. Bonet and H. Geffner. Labeled rtdp: Improving the convergence of real-time

dynamic programming. In International Conference on Automated Planning and
Scheduling, volume 3, 2003.

7. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile
robots. In IEEE International Conference on Robotics and Automation, volume 2,
pages 1322–1328. IEEE, 2001.

8. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Machine Learning Research, 13(1):63, May 1999.

9. E. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

10. N. Jong and P. Stone. Hierarchical model-based reinforcement learning: R-max +
MAXQ. In Proceedings of the 25th international conference on Machine learning,
pages 432–439. ACM, 2008.

11. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134,
1998.

12. H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa, H. Matsubara,
I. Noda, and M. Asada. The robocup synthetic agent challenge 97. In International
Joint Conference on Artificial Intelligence, volume 15, pages 24–29, 1997.

13. L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. European Con-
ference on Machine Learning, pages 282–293, 2006.

14. M. Littman, T. Dean, and L. Kaelbling. On the complexity of solving markov
decision problems. In Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 394–402. Citeseer, 1995.

15. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12(2-3):233–250, 1998.

16. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., 1994.

17. P. Stone. Layered learning in multiagent systems: A winning approach to robotic
soccer. The MIT press, 2000.

18. R. Sutton and A. Barto. Reinforcement learning: An introduction, volume 116.
Cambridge Univ Press, 1998.

19. S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization
for mobile robots. Artificial intelligence, 128(1-2):99–141, 2001.

