Towards a Principled Solution to Simulated
Robot Soccer

Aijun Bai, Feng Wu, and Xiaoping Chen

Department of Computer Science,
University of Science and Technology of China,
{baj, wufeng}@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. The RoboCup soccer simulation 2D domain is a very large
testbed for the research of planning and machine learning. It has com-
peted in the annual world championship tournaments in the past 15
years. However it is still unclear that whether more principled techniques
such as decision-theoretic planning take an important role in the success
for a RoboCup 2D team. In this paper, we present a novel approach
based on MAXQ-OP to automated planning in the RoboCup 2D do-
main. It combines the benefits of a general hierarchical structure based
on MAXQ value function decomposition with the power of heuristic and
approximate techniques. The proposed framework provides a principled
solution to programming autonomous agents in large stochastic domains.
The MAXQ-OP framework has been implemented in our RoboCup 2D
team, WrightEagle. The empirical results indicated that the agents de-
veloped with this framework and related techniques reached outstanding
performances, showing its potential of scalability to very large domains.

Keywords: RoboCup, Soccer Simulation 2D, MAXQ-OP

1 Introduction

As one of oldest leagues in RoboCup, soccer simulation 2D has achieved great
successes and inspired many researchers all over the world to engage themselves
in this game each year [5]. Hundreds of research articles based on RoboCup 2D
have been published.! Comparing to other leagues in RoboCup, the key feature of
RoboCup 2D is the abstraction made, which relieves the researchers from having
to handle low-level robot problems such as object recognition, communications,
and hardware issues. The abstraction enables researchers to focus on high-level
functions such as cooperation and learning. The key challenge of RoboCup 2D
lies in the fact that it is a fully distributed, multi-agent stochastic domain with
continuous state, action and observation space [8].

Stone et al. [9] have done a lot of work on applying reinforcement learn-
ing methods to RoboCup 2D. Their approaches learn high-level decisions in a
keepaway subtask using episodic SMDP Sarsa(A) with linear tile-coding function
approximation. More precisely, their robots learn individually when to hold the
ball and when to pass it to a teammate. Most recently, they extended their work

! nttp://www.cs.utexas.edu/~pstone/tmp/sim-league-research.pdf

to a more general task named half field offense [6]. On the same reinforcement
learning track, Riedmiller et al. [7] have developed several effective techniques
for learning mainly low-level skills in RoboCup 2D.

In this paper, we present an alternative approach based on MAXQ-OP [1] to
automated planning in the RoboCup 2D domain. It combines the main advan-
tages of online planning and hierarchical decomposition, namely MAXQ. The
proposed framework provides a principled solution to programming autonomous
agents in large stochastic domains. The key contribution of this paper lies in
the overall framework for exploiting the hierarchical structure online and the
approximation made for computing the completion function. The MAXQ-OP
framework has been implemented in our team WrightEagle, which has been par-
ticipating in annual competitions of RoboCup since 1999 and have got 3 cham-
pions and 4 runners-up of RoboCup in recent 7 years.?2 The empirical results
indicated that the agents developed with this framework and the related tech-
niques reached outstanding performances, showing its potential of scalability to
very large domains.

The remainder of this paper is organized as follows. Section 2 introduces some
background knowledge. Section 3 describes the MAXQ-OP framework in detail.
Section 4 presents the implementation details in the RoboCup 2D domain, and
Section 5 shows the empirical evaluation results. Finally, Section 6 concludes the
paper with some discussion of future work.

2 Background

In this section, we briefly introduce the background, namely RoboCup 2D and
the MAXQ hierarchical decomposition methods. We assume that readers already
have sufficient knowledge on RoboCup 2D. For MAXQ, we only describe some
basic concepts but refer [4] for more details.

2.1 RoboCup soccer simulation 2D

In RoboCup 2D, a central server simulates a 2-dimensional virtual soccer field
in real-time. Two teams of fully autonomous agents connect to the server via
network sockets to play a soccer game over 6000 steps. A team can have up to
12 clients including 11 players (10 fielders plus 1 goalie) and a coach. Each client
interacts independently with the server by 1) receiving a set of observations;
2) making a decision; and 3) sending actions back to the server. Observations
for each player only contain noisy and local geometric information such as the
distance and angle to other players, ball, and field markings within its view
range. Actions are atomic commands such as turning the body or neck to an
angle, dashing in a given direction with certain power, kicking the ball to an
angle with specified power, or slide tackling the ball.

2.2 MAXQ hierarchical decomposition

Markov decision processes (MDPs) have been proved to be a useful model for
planning under uncertainty. In this paper, we concentrate on undiscounted goal-

? Team website: http://www.wrighteagle.org/2d

directed MDPs (also known as stochastic shortest path problems). It is shown
that any MDP can be transformed into an equivalent undiscounted negative
goal-directed MDP where the reward for non-goal states is strictly negative [2].
So undiscounted goal-directed MDP is actually a general formulation.

The MAXQ technique decomposes a given MDP M into a set of sub-MDPs
arranged over a hierarchical structure, denoted by { My, My, - -+ , M, }. Each sub-
MDP is treated as a distinct subtask. Specifically, M, is the root subtask which
means solving My solves the original MDP M. An unparameterized subtask M;
is defined as a tuple (T3, 4;, R;), where:

— T; is the termination predicate that defines a set of active states .S;, and a

set of terminal states G; for subtask M;.

— A; is a set of actions that can be performed to achieve subtask M;, which
can either be primitive actions from M, or refer to other subtasks.
— R; is the optional pseudo-reward function which specifies pseudo-rewards for

transitions from active states S; to terminal states G;.

It is worth pointing out that if a subtask has task parameters, then different
binding of the parameters, may specify different instances of a subtask. Primitive
actions are treated as primitive subtasks such that they are always executable,
and will terminate immediately after execution.

Given the hierarchical structure, a hierarchical policy 7 is defined as a set
of policies for each subtask m = {mg, 71, -, 7}, where m; is a mapping from
active states to actions ; : S; — A;. The projected value function of policy 7 for
subtask M; in state s, V7 (i,s), is defined as the expected value after following
policy 7 at state s until the subtask M; terminates at one of its terminal states
in G;. Similarly, Q™ (4, s, a) is the expected value by firstly performing action M,
at state s, and then following policy 7 until the termination of M;. It is worth
noting that V™ (a,s) = R(s,a) if M, is a primitive action a € A.

Dietterich [4] has shown that a recursively optimal policy 7* can be found by
recursively computing the optimal projected value function as:

Q*(i,s,a) = V*(a,s) + C*(i,s,a), (1)
where (5.1)
wre o\ J R(s,1 if M; is primitive
Vi(i,s) = {maxaeAi Q*(i,s,a) otherwise ’ (2)

and C*(i,s,a) is the completion function fot optimal policy 7* that estimates
the cumulative reward received with the execution of (macro-) action M, before
completing the subtask M;, as defined below:

C*(i737a) = ZVNP(S/5N|57G)V*('L.7S/>7 (3>
s’ N

where P(s’, N|s,a) is the probability that subtask M, at s terminates at state
s’ after N steps.

3 Online Planning with MAXQ

In this section, we explain in detail how our MAXQ-OP solution works. As men-
tioned above, MAXQ-OP is a novel online planning approach that incorporates
the power of the MAXQ decomposition to efficiently solve large MDPs.

Algorithm 1: OnlinePlanning()

Input: an MDP model with its MAXQ hierarchical structure
Output: the accumulated reward r after reaching a goal

r < 0;

s < GetInitState();

while s € Gy do

L (v,ap) < EvaluateState(0,s,[0,0,---,0]);

r < r+ ExecuteAction(ap, s);
s + GetNextState();

N 0 A WN =

return r;

3.1 Overview of MAXQ-OP

In general, online planning interleaves planning with execution and chooses the
best action for the current step. Given the MAXQ hierarchy of an MDP, M =
{My, My, -+, M,}, the main procedure of MAXQ-OP evaluates each subtask by
forward search to compute the recursive value functions V*(i, s) and Q*(4, s, a)
online. This involves a complete search of all paths through the MAXQ hierarchy
starting from the root task My and ending with some primitive subtasks at the
leaf nodes. After the search process, the best action a € Ag is chosen for the
root task based on the recursive Q function. Meanwhile, the best primitive action
ap € A that should be performed first is also determined. This action a, will be
executed to the environment, leading to a transition of the system state. Then,
the planning procedure starts over to select the best action for the next step.
As shown in Algorithm 1, state s is initialized by GetInitState and the func-
tion GetNextState returns the next state of the environment after ExecuteAction
is performed. It executes a primitive action to the environment and returns a
reward for running that action. The main process loops over until a goal state
in Gy is reached. Obviously, the key procedure of MAXQ-OP is EvaluateState,
which evaluates each subtask by depth-first search and returns the best action
for the current state. Section 3.2 will explain EvaluateState in more detail.

3.2 Task Evaluation over Hierarchy

In order to choose the best action, the agent must compute a Q function for
each possible action at the current state s. Typically, this will form a search tree
starting from s and ending with the goal states. The search tree is also known as
an AND-OR tree where the AND nodes are actions and the OR nodes are states.
The root node of such an AND-OR tree represents the current state. The search
in the tree is processed in a depth-first fashion until a goal state or a certain
pre-determined fixed depth is reached. When it reaches the depth, a heuristic is
often used to evaluate the long term value of the state at the leaf node.

When the task hierarchy is given, it is more difficult to perform such a search
procedure since each subtask may contain other subtasks or several primitive
actions. As shown in Algorithm 2, the search starts with the root task M; and
the current state s. Then, the node of the current state s is expanded by trying
each possible subtask of M;. This involves a recursive evaluation of the subtasks
and the subtask with the highest value is selected. As mentioned in Section 2,

Algorithm 2: EvaluateState (i, s,d)

Input: subtask M;, state s and depth array d
Output: (V*(i,s),a primitive action ay,)
if M; is primitive then return (R(s, M;), M;);
else if s ¢ S; and s € G; then return (—oo, nil);
else if s € G; then return (0, nil);
else if d[i] > D[i] then return (HeuristicValue(i,s),nil);
else
<’U*7 a;) — <_007 ’I’Lil>;
for M, € Subtasks(M;) do
if My, is primitive or s € GG, then
(v,ap) + EvaluateState(k, s, d);
v <~ v+ EvaluateCompletion(i,s, k,d);
if v > v™ then

L (0% ap) < (v,ap);

© 00 N0 A WN -

[
N = O

13 return (v*, ay);

the evaluation of a subtask requires the computation of the value function for
its children and the completion function. The value function can be computed
recursively. Therefore, the key challenge is to calculate the completion function.

Intuitively, the completion function represents the optimal value of fulfilling
the task M; after executing a subtask M, first. According to Equation 3, the
completion function of an optimal policy 7* can be written as:

C*(iys,a) = Y YN P(s',N|s,a)V™ (i,), (4)
s’ N
where
P(SI’ N|S, a) - Z<37817..47$N71> P(81|Sa W;(S)) : P(82|$1,71':(81)) (5>
P lsn1 i (sn-1).
More precisely, (s, s1,...,S$ny—1) is a path from the state s to the terminal state s’

by following the optimal policy 7 € 7*. It is worth noticing that 7* is a recursive
policy constructed by other subtasks. Obviously, computing the optimal policy
7* is equivalent to solving the entire problem. In principle, we can exhaustively
expand the search tree and enumerate all possible state-action sequences starting
with s,a and ending with s’ to identify the optimal path. Obviously, this may
be inapplicable for large domains. In Section 3.3, we will present a more efficient
way to approximate the completion function.

Algorithm 2 summarizes the major procedures of evaluating a subtask. Clearly,
the recursion will end when: 1) the subtask is a primitive action; 2) the state is
a goal state or a state outside the scope of this subtask; or 3) a certain depth
is reached, i.e. d[i] > DJi] where d[i] is the current forward search depth and
DJi] is the maximal depth allowed for subtask M;. It is worth pointing out, dif-
ferent maximal depths are allowed for each subtask. Higher level subtasks may
have smaller maximal depth in practice. If the subtask is a primitive action,
the immediate reward will be returned as well as the action itself. If the search

Algorithm 3: EvaluateCompletion(i,s,a,d)

Input: subtask M;, state s, action M, and depth array d
Output: estimated C*(i, s, a)

1 G, <+ ImportanceSampling(G,, D,);

2 v+ 0

3 for s’ € G, do

4 d + d;

5 d'[i] « d'[i] + 1;

6 V4= v+ ﬁ EvaluateState(i,s’,d’);
7 return v;

reaches a certain depth, it also returns with a heuristic value for the long-term
reward. In this case, a nil action is also returned, but it will never be chosen by
higher level subtasks. If none of the above conditions holds, it will loop over and
evaluate all the children of this subtask recursively.

3.3 Completion Function Approximation

To exactly compute the optimal completion function, the agent must know the
optimal policy 7* first which is equivalent to solving the entire problem. However,
it is intractable to find the optimal policy online due to the time constraint.
When applying MAXQ-OP to large problems, approximation should be made
to compute the completion function for each subtask. One possible solution
is to calculate an approximate policy offline and then to use it for the online
computation of the completion function. However, it may be also challenging to
find a good approximation of the optimal policy if the domain is very large.
Notice that the term v~ in Equation 3 is equal to 1 when v = 1, which is the
default setting of this paper. Given an optimal policy, the subtask will terminate
at a certain goal state with the probability of 1 after several steps. To compute
the completion function, the only term need to be considered is P(s’, N|s,a)—a
distribution over the terminal states. Given a subtask, it is often possible to
directly approximate the distribution disregarding the detail of execution.
Based on these observations, we assume that each subtask M; will terminate
at its terminal states in G; with a prior distribution of D;. In principle, D; can be
any probability distribution associated with each subtask. Denoted by G, a set
of sampled states drawn from prior distribution D, using importance sampling
[10] techniques, the completion function C*(i, s, a) can be approximated as:

C*(i,8,a) = ! > VS (6)

|Ga‘ s'€G,

A recursive procedure is proposed to estimate the completion function, as shown
in Algorithm 3. In practice, the prior distribution D,—a key distribution when
computing the completion function, can be improved by considering the domain
knowledge. Take the robot soccer domain for example. The agent at state s may
locate in a certain position of the field. Suppose s’ is the goal state of successfully
scoring the ball. Then, the agent may have higher probability to reach s if it

directly dribbles the ball to the goal or passes the ball to some teammates who
is near the goal, which is specified by the action a in the model.

3.4 Heuristic Search in Action Space

For some domains with large action space, it may be very time-consuming to
enumerate all possible actions exhaustively. Hence it is necessary to introduce
some heuristic techniques (including prune strategies) to speed up the search
process. Intuitively, there is no need to evaluate those actions that are not likely
to be better. In MAXQ-OP, this is done by implementing a iterative version of
Subtasks function which dynamically selects the most promising action to be
evaluated next with the tradeoff between exploitation and exploration. Different
heuristic techniques can be used for different subtasks, such as A*| hill-climbing,
gradient ascent, etc. The discussion of the heuristic techniques is beyond the
scope of this paper, and the space lacks for a detailed description of it.

4 Implementation in RoboCup 2D

It is our long-term effort to apply the MAXQ-OP framework to the RoboCup 2D
domain. In this section, we present the implementation details of the MAXQ-OP
framework in WrightEagle.

4.1 RoboCup 2D as an MDP

In this section, we present the technical details on modeling the RoboCup 2D
domain as an MDP. As mentioned, it is a partially-observable multi-agent do-
main with continuous state and action space. To model it as a fully-observable
single-agent MDP, we specify the state and action spaces and the transition and
reward functions as follows:

State Space We treat teammates and opponents as part of the environment
and try to estimate the current state with sequences of observations. Then, the
state of the 2D domain can be represented as a fixed-length vector, containing
state variables that totally cover 23 distinct objects (10 teammates, 11 oppo-
nents, the ball, and the agent itself).

Action Space All primitive actions, like dash, kick, tackle, turn and turn_neck,
are originally defined by the 2D domain. They all have continuous parameters,
resulting a continuous action space.

Transition Function Considering the fact that autonomous teammates and
opponents make the environment unpredictable, the transition function is not
obvious to represent. In our team, the agent assumes that all other players share
a same predefined behavior model: they will execute a random kick if the ball
is kickable for them, or a random walk otherwise. For primitive actions, the
underlying transition model for each atomic command is fully determined by
the server as a set of generative models.

Reward Function The underlying reward function has a sparse property:
the agent usually earns zero rewards for thousands of steps before ball scored or
conceded, may causing that the forward search process often terminate without

< Root Ta ;lé
e <
Attack Defens@ N

\\

— — .
@fmibb@ Shoot (ntercmst Block Mar) gFormanon/ Tra\

QK.ckTo()l/TackleTo(\T tNavTo()}-' -
@5 Qackle() '(turn(é (ash()

Fig. 1. MAXQ task graph for WrightEagle

any rewards obtained, and thus can not tell the differences between subtasks. In
our team, to emphasize each subtask’s characteristic and to guarantee that posi-
tive results can be found by the search process, a set of pseudo-reward functions
is developed for each subtask.

To estimate the size of the state space, we ignore some secondary variables
for simplification (such as heterogeneous parameters and stamina information).
Totally 4 variables are needed to represent the ball’s state including position
(x,y) and velocity (vg,vy). In addition with (z,y) and (v,,vy), two more vari-
ables are used to represent each player’s state including body direction dj, and
neck direction d,,. Therefore the full state vector has a dimensionality of 136.
All these state variables have continuous values, resulting a high-dimensional
continuous state space. If we discretize each state variable into 10% uniformly
distributed values in its own field of definitions, then we obtain a simplified
state space with 10%°% states, which is extremely larger than domains usually
studied in the literature.

4.2 Solution with MAXQ-OP

In this section, we describe how to apply MAXQ-OP to the RoboCup soccer
simulation domain. Firstly, a series of subtasks at different levels are defined as
the building blocks of constructing the MAXQ hierarchy, listed as follows:

— kick, turn, dash, and tackle: They are low-level parameterized primitive ac-
tions originally defined by the soccer server. A reward of -1 is assigned to
each primitive action to guarantee that the optimal policy will try to reach
a goal as fast as possible.

— KickTo, TackleTo, and NavTo: In the KickTo and TackleTo subtask, the goal
is to kick or tackle the ball to a given direction with a specified velocity,
while the goal of the NavTo subtask is to move the agent from its current
location to a target location.

— Shoot, Dribble, Pass, Position, Intercept, Block, Trap, Mark, and Formation:
These subtasks are high-level behaviors in our team where: 1) Shoot is to
kick out the ball to score; 2) Dribble is to dribble the ball in an appropriate
direction; 3) Pass is to pass the ball to a proper teammate; 4) Position is to
maintain the teammate formation for attacking; 5) Intercept is to get the ball
as fast as possible; 6) Block is to block the opponent who controls the ball;
7) Trap is to hassle the ball controller and wait to steal the ball; 8) Mark is to
mark related opponents; 9) Formation is to maintain formation for defense.

— Attack and Defense: Obviously, the goal of Attack is to attack opponents to
score while the goal of Defense is to defense against opponents.

— Root: This is the root task. It firstly evaluate the Attack subtask to see
whether it is ready to attack, otherwise it will try the Defense subtask.
The graphical representation of the MAXQ hierarchical structure is shown

in Figure 1, where a parenthesis after a subtask’s name indicates this subtask
will take parameters. It is worth noting that state abstractions are implicitly
introduced by this hierarchy. For example in the NavTo subtask, only the agent’s
own state variables are relevant. It is irrelevant for the KickTo and TackleTo
subtasks to consider those state variables describing other players’ states. To
deal with the large action space, heuristic methods are critical when applying
MAXQ-OP. There are many possible candidates depending on the characteristic
of subtasks. For instance, hill-climbing is used when searching over the action
space of KickTo for the Pass subtask and A* search is used when searching over
the action space of dash and turn for the NavTo subtask.

As mentioned earlier, the method for approximating the completion function
is crucial for the performance when implementing MAXQ-OP. In RoboCup 2D,
it is more challenging to compute the distribution because: 1) the forward search
process is unable to run into an sufficient depth due to the online time constraint;
and 2) the future states are difficult to predict due to the uncertainty of the en-
vironment, especially the unknown behaviors of the opponent team. To estimate
the distribution of reaching a goal, we used a variety techniques for different
subtasks based on the domain knowledge. Take the Attack subtask for example.
A so-called impelling speed is used to approximate the completion probability.
It is formally defined as:

dist(s, s, a) 4+ pre_dist(s', a)

,) ;o
impelling_speed(s, s',a) = step(s.) £ prestep(s))

(7)

where « is a given direction (called aim-angle), dist(s, s, «) is the ball’s running
distance in direction « from state s to state s', step(s, s’) is the estimated steps
from state s to state s’, pre_dist(s’) estimates final distance in direction « that
the ball can be impelled forward starting from state ', and pre_step(s’) esti-
mates the respective steps. The aim-angle in state s is determined dynamically
by aim_angle(s) function. The value of impelling_speed(s, s', aim_angle(s)) in-
dicates the fact that the faster the ball is moved in a right direction, the more
attack chance there would be. In practice, it makes the team attack more effi-
cient. As a result, it can make a fast score within tens of steps in the beginning
of a match. Different definitions of the aim_angle function can produce substan-
tially different attack styles, leading to a very flexible and adaptive strategy,
particularly for unfamiliar teams.

5 Empirical Evaluation

To test how the MAXQ-OP framework affects our team’s final performance, we
compared three different versions of our team, including:
— FurL: This is exactly the full version of our team, where a complete MAXQ-
OP online planning framework is implemented as the key component.

Fig. 2. A selected scene from the final match of RoboCup 2011

— RANDOM: This is nearly the same as FULL, except that when the ball is
kickable for the agent and the Shoot behavior finds no solution, the Attack
behavior randomly chooses a macro-action to perform between Pass and
Dribble with uniform probability.

— HAND-CODED: This is similar to RANDOM, but instead of a random selection
between Pass and Dribble, a hand-coded strategy is used. With this strategy,
if there is no opponent within 3m from the agent, then Dribble is chosen;
otherwise, Pass is chosen.

The only difference between FULL, RANDOM and HAND-CODED is the local se-
lection strategy between Pass and Dribble in the Attack behavior. In FULL, this
selection is automatically based on the value function of subtasks (i.e. the so-
lutions found by EvaluateState(Pass,-,-) and EvaluateState(Dribble,-,) in
the MAXQ-OP framework). Although RANDOM and HAND-CODED have dif-
ferent Pass-Dribble selection strategies, the other subtasks of Attack, including
Shoot, Pass, Dribble, and Intercept, as that of FULL, remain the same.

For each version, we use an offline coach (also known as a trainer) to inde-
pendently run the team against the Helios11 binary (which has participated in
RoboCup 2011 and won the second place) for 100 episodes. Each episode begins
with a fixed scene (i.e. the full state vector) taken from the final match we have
participated in of RoboCup 2011, and ends when: 1) our team scores a goal, de-
noted by success; or 2) the ball’s x coordination is smaller than -10, denoted by
failure; or 3) the episode lasts longer than 200 cycles, denoted by timeout. It
is worth mentioning that although all of the episode begin with the same scene,
none of them is identical due to the uncertainty of the environment.

The selected scene, which is originally located at cycle #3142 of that match, is
depicted in Figure 2 where white circles represent our players, gray ones represent
opponents, and the small black one represents the ball. We can see that our player
10 was holding the ball at that moment, while 9 opponents (including goalie)
were blocking just in front of their goal area. In RoboCup 2011, teammate 10
passed the ball directly to teammate 11. Having got the ball, teammate 11
decided to pass the ball back to teammate 10. When teammate 11 had moved
to an appropriate position, the ball was passed again to it. Finally, teammate
11 executed a tackle to shoot at cycle #3158 and scored a goal 5 cycles later.

Table 1 summarizes the test results showing that the FULL version of our
team outperforms both RANDOM and HAND-CODED with an increase of the

Table 1. Empirical results of WrightEagle in episodic scene test

[Version [Episodes[Success|Failure[Timeout]

FuLL 100 28 31 41
RANDOM 100 15 44 41
HAND-CODED 100 17 38 45

Table 2. Empirical results of WrightEagle in full game test

[Opponent Team|Games[Avg. Goals[Avg. Points[Winning Rate]

BrainsStomers08 100 3.09 : 0.82 2.59:0.28 82.0 £ 7.5%
Helios10 100 4.30 : 0.88 | 2.84 : 0.11 93.0 £ 5.0%
Helios11 100 3.04:1.33 | 2.33:0.52 72.0 + 8.8%
Oxsyll 100 4.97:1.33 | 2.79:0.16 91.0 +5.6%

chance of sucess by 86.7% and 64.7% respectively. We find that although FuLL,
RANDOM and HAND-CODED have the same hierarchical structure and subtasks
of Attack, the local selection strategy between Pass and Dribble plays a key role
in the decision of Attack and affects the final performance substantially. It can be
seen from the table that MAXQ-OP based local selection strategy between Pass
and Dribble is sufficient for the Attack behavior to achieve a high performance.
Recursively, this is also true for other subtasks over the MAXQ hierarchy, such
as Defense, Shoot, Pass, etc. To conclude, MAXQ-OP is able to be the key to
success of our team in this episodic scene test.

We also tested the FULL version of our team in full games against 4 best
RoboCup 2D opponent teams, namely BrainsStomers08, Helios10, Helios11 and
Oxsyl1l, where BrainStormers08 and Helios10 were the champion of RoboCup
2008 and RoboCup 2010 respectively. In the experiments, we independently ran
our team against the binary codes officially released by them for 100 games on
exactly the same hardware. Table 2 summarizes the detailed empirical results
with our winning rate, which is defined as p = n/N, where n is the number of
games we won, and [V is the total number of games. It can be seen from the table
that our team with the implementation of MAXQ-OP substantially outperforms
other tested teams. Specifically, our team had about 82.0%, 93.0%, 72.0% and
91.0% of the chances to win BrainsStomers08, Helios10, Helios11 and Oxsyll
respectively.

While there are multiple factors contributing to the general performance of a
RoboCup 2D team, it is our observation that our team benefits greatly from the
abstraction we made for the actions and states. The key advantage of MAXQ-OP
in our team is to provide a formal framework for conducting the search process
over a task hierarchy. Therefore, the team can search for a strategy-level solution
automatically online by given the pre-defined task hierarchy. To the best of our
knowledge, most of the current RoboCup teams develop their team based on
hand-coded rules and behaviors.

6 Conclusions

This paper presents a novel approach to automated planning in the RoboCup 2D
domain. It benefits from both the advantage of hierarchical decomposition and
the power of heuristics. Barry et al. proposed an offfine algorithm called DetH*
[3] to solve large MDPs hierarchically by assuming that the transitions between
macro-states are totally deterministic. In contrast, we assume a prior distribution
over the terminal states of each subtask, which is more realistic. The MAXQ-
OP framework has been implemented in the team WrightEagle. The empirical
results indicated that the agents developed with this framework and the related
techniques reached outstanding performances, showing its potential of scalability
to very large domains. This demonstrates the soundness and stability of MAXQ-
OP for solving large MDPs with the pre-defined task hierarchy. In the future,
we plan to theoretically analyze MAXQ-OP with different task priors and try to
generate these priors automatically.

7 Acknowledgments

This work is supported by the National Hi-Tech Project of China under grant
2008A A01Z150 and the Natural Science Foundation of China under grant 60745002
and 61175057. The authors thank Haochong Zhang, Guanghui Lu, and Miao
Jiang for their contributions to this work. We are also grateful to the anony-
mous reviewers for their constructive comments and suggestions.

References

1. Bai, A., Wu, F.; Chen, X.: Online planning for large MDPs with MAXQ decom-
position (extended abstract). In: Proc. of 11th Int. Conf. on Autonomous Agents
and Multiagent Systems. Valencia, Spain (June 2012)

2. Barry, J.: Fast Approximate Hierarchical Solution of MDPs. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2009)

3. Barry, J., Kaelbling, L., Lozano-Perez, T.: Deth*: Approximate hierarchical so-
lution of large markov decision processes. In: International Joint Conference on
Artificial Intelligence. pp. 1928-1935 (2011)

4. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Machine Learning Research 13(1), 63 (May 1999)

5. Gabel, T., Riedmiller, M.: On progress in robocup: the simulation league showcase.
RoboCup 2010: Robot Soccer World Cup XIV pp. 36-47 (2011)

6. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in robocup soccer: A
multiagent reinforcement learning case study. RoboCup 2006: Robot Soccer World
Cup X pp. 72-85 (2007)

7. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot
soccer. Autonomous Robots 27(1), 55-73 (2009)

8. Stone, P.: Layered learning in multiagent systems: A winning approach to robotic
soccer. The MIT press (2000)

9. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior 13(3), 165-188 (2005)

10. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for
mobile robots. Artificial intelligence 128(1-2), 99-141 (2001)

