
WrightEagle and UT Austin Villa:
RoboCup 2011 Simulation League Champions

Aijun Bai†, Xiaoping Chen†,
Patrick MacAlpine‡, Daniel Urieli‡, Samuel Barrett‡, and Peter Stone‡

†Department of Computer Science, University of Science and Technology of China
xpchen@ustc.edu.cn

‡Department of Computer Science, The University of Texas at Austin
pstone@cs.utexas.edu

Abstract. The RoboCup simulation league is traditionally the league
with the largest number of teams participating, both at the interna-
tional competitions and worldwide. 2011 was no exception, with a total
of 39 teams entering the 2D and 3D simulation competitions. This pa-
per presents the champions of the competitions, WrightEagle from the
University of Science and Technology of China in the 2D competition,
and UT Austin Villa from the University of Texas at Austin in the 3D
competition.

1 Introduction

The RoboCup simulation league has always been an important part of the
RoboCup initiative. The distinguishing feature of the league is that the soc-
cer matches are run in software, with no physical robot involved. As such, some
of the real-world challenges that arise in the physical robot leagues can be ab-
stracted away, such as image processing and wear and tear on physical gears. In
exchange, it becomes possible in the simulation league to explore strategies with
larger teams or robots (up to full 11 vs. 11 games), and to leverage the possibility
of automating large numbers of games, for example for the purpose of machine
learning or to establish statistically significant effects of strategy changes.

In 2011, as in recent past years, there were two separate simulation compe-
titions held at RoboCup. In both cases, a server simulates the world including
the dynamics and kinematics of the players and ball. Participants develop a fully
autonomous team of client agents that each interact separately with the server
by i) receiving sensations representing the view from its current location; ii) de-
ciding what actions to execute; and iii) sending the actions back to the server
for execution in the simulated world. The sensations are abstract and noisy in
that they indicate the approximate distance and angle to objects (players, ball,
and field markings) that are in the direction that the agent is currently looking.
The server proceeds in real time, without waiting for agent processes to send
their actions: it is up to each agent to manage its deliberation time so as to
keep up with the server’s pace. Furthermore, each agent must be controlled by a

completely separate process, with no file sharing or inter-process communication
(simulated low-bandwidth verbal communication is available via the server).

Though similar in all of the above respects, the 2D and 3D simulators also
differ in some important ways. As their names suggest, the 2D simulator models
only the (x, y) positions of objects, while the 3D simulator includes the third
dimension. In the 2D simulator, the players and the ball are modeled as circles.
In addition to its (x, y) location, each player has a direction that its body is
facing, which affects the directions it can move; and a separate direction in which
it is looking, which affects its sensations. Actions are abstract commands such
as turning the body or neck by a specified angle, dashing forwards or backwards
with a specified power, kicking at a specified angle with a specified power (when
the ball is near), or slide tackling in a given direction. Teams consist of 11 players,
including a goalie with special capabilities such as catching the ball when it is
near. In particular, the 2D simulator does not model the motion of any particular
physical robot, but does capture realistic team-level strategic interactions.

In contrast, the 3D simulator implements a physically realistic world model
and an action interface that is reflective of that experienced by real robots.
The simulator uses the Open Dynamics Engine1 (ODE) library for its realistic
simulation of rigid body dynamics with collision detection and friction. ODE also
provides support for the modeling of advanced motorized hinge joints used in
the humanoid agents. The agents are modeled after the Aldebaran Nao robot,2

which has a height of about 57 cm, and a mass of 4.5 kg. The agents interact
with the simulator by sending actuation commands to each of the robot’s joints.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20ms), while joint
effectors allow the agent to specify the direction and speed (torque) in which to
move a joint. Although there is no intentional noise in actuation, there is slight
actuation noise that results from approximations in the physics engine and the
need to constrain computations to be performed in real-time. The 3D simulator
thus presents motion challenges similar to that of the humanoid soccer leagues,
especially the standard platform league (SPL) which uses physical Nao robots.
In particular, it is a non-trivial challenge to enable the robots to walk and kick
without falling over. The 3D simulation league teams consist of 9 (homogeneous)
players, rather than 4 as in the SPL.

In 2011, the 2D and 3D simulation competitions included 17 and 22 teams,
respectively, from around the world. This paper briefly describes and compares
the two champion teams, WrightEagle from USTC in the 2D simulation league,
and UT Austin Villa from UT Austin in the 3D simulation league.

The remainder of the paper is organized as follows. Section 2 introduces
the WrightEagle team, particularly emphasizing its heuristic approximate online
planning for large-scale and sparse-reward MDPs. Section 3 introduces the UT

1 http://www.ode.org/
2 http://www.aldebaran-robotics.com/eng/

Austin Villa Team, focussing especially on its learning-based walk. Section 4
concludes.

2 WrightEagle: 2D Simulation League Champions

This section describes the RoboCup 2011 2D competition champion team,
WrightEagle. First the overall system structure, based on hierarchical MDPs,
is introduced, which then leads into an overview of the team’s main research
focus: heuristic approximate planning in such MDPs.

2.1 System Structure of WrightEagle

The team WrightEagle, including the latest version, has been developed based
on the Markov decision processes (MDPs) framework [1], with the MAXQ hi-
erarchical structure [2] and heuristic approximate online planning techniques
strengthened particularly in the past year.

MDP Framework Formally, an MDP is defined as a 4-tuple 〈S,A, T,R〉, where

– S is the set of possible states of the environment,
– A is the set of available actions of the agent,
– T is the transition function with T (s′|s, a) denoting the next state probability

distribution by performing action a in state s,
– R is the reward function withR(s, a) denoting the immediate reward received

by the agent after performing action a in state s.

A set of standard algorithms exist for solving MDP problems, including linear
programming, value iteration, and policy iteration [1]. However, in large-scale
and sparse-reward domains such as the 2D simulator, solving the MDP problem
directly is to some degree intractable. In WrightEagle, some techniques including
the MAXQ hierarchy and heuristic approximate online planning were applied to
overcome this difficulty.

MAXQ Hierarchical Decomposition The MAXQ framework decomposes
a given MDP into a hierarchy of sub MDPs (known as subtasks or behaviors)
{M0,M1, · · · ,Mn}, where M0 is the root subtask which means solving M0 solves
the entire original MDP [2]. Each of the subtasks is defined with a subgoal, and
it terminates when its subgoal is achieved.

Over the hierarchical structure, a hierarchical policy π is defined as a set of
policies for each of the subtasks π = {π0, π1, · · · , πn}. Each subtask policy πi is
a mapping from states to actions πi : Si → Ai, where Si is the set of relevant
states of subtask Mi and Ai is the set of available primitive actions or composite
actions (i.e. its subtasks) of that subtask.

A hierarchical policy is recursively optimal if the local policy for each subtask
is optimal given that all its subtasks are in turn recursively optimal [3].

Dietterich [4] has shown that a recursively optimal policy can be found by
computing its recursively optimal V function, which satisfies:

Q(i, s, a) = V (a, s) + C(i, s, a) , (1)

V (i, s) =

{
maxa Q(i, s, a) if i is composite
R(s, i) otherwise

, (2)

and
C(i, s, a) =

∑
s′,N

γNT (s′, N |s, a)V (i, s′) , (3)

where T (s′, N |s, a) is the probability that the system terminates in state s′ with
a number of steps N after action a is invoked.

To solve V (i, s), a complete search of all paths through the MAXQ hierarchy
starting from subtask Mi and ending at primitive actions should be performed,
in a depth-first search way. If V (i, s) for subtaskMi is known, then its recursively
optimal policy can be generated from πi(s) = argmaxa Q(i, s, a).

Fig. 1: MAXQ task graph for WrightEagle

Hierarchical Structure
of WrightEagle The main
hierarchical structure of
WrightEagle is shown in Fig.
1. The two subtasks of root
task WrightEagle are Attack
and Defense. Attack has its
subtasks including Shoot,
Dribble, Pass, Position and
Intercept, while Defense has
its subtasks including Block, Trap, Mark and Formation. In WrightEagle, these
subtasks are called behaviors.

Behaviors share their same subtasks, including KickTo, TackleTo and NavTo.
Note that, the parentheses after these subtasks in Fig. 1 indicate that they are
parameterized. In turn, these subtasks also share their same subtasks consisting
of kick, turn, tackle and dash, which are parameterized primitive actions originally
defined by the 2D domain.

2.2 Heuristic Approximate Online Planning

Theoretically, the full recursively optimal V function can be solved by some
standard algorithms. But in practice this is intractable in 2D domain, because:

1. the state and action space is huge, even if discretization methods are used;
2. the reward function is very sparse, as the ball is usually running for thousands

of cycles without any goals being scored;
3. the environment is unpredictable as teammates and opponents are all au-

tonomous agents having the ability to make their own decisions, which pre-
vents the original MDP problem to be solved completely offline.

For these reasons, the WrightEagle team focuses on approximate but not
exact solutions. Our method is to compute the recursively optimal V function
by heuristic online planning techniques under the consideration of simplification.

Current State Estimation To model the RoboCup 2D domain as an MDP
which assumes that the environment’s state is fully observable, the agent must
overcome the difficulty that it can only receive local and noisy observations, to
obtain a precise enough estimation of the environment’s current state. In our
team, the agent estimates the current state from its belief [5]. A belief b is a
probability distribution over state space, with b(s) denoting the probability that
the environment is actually in state s. We assume conditional independence
between individual objects, then the belief b(s) can be expressed as

b(s) =
∏

0≤i≤22

bi(s[i]), (4)

where s is the full state vector, s[i] is the partial state vector for object i, and
bi(s[i]) is the marginal distribution for s[i]. A set of mi weighted samples (also
known as particles) are then used to approximate bi as:

bi(s[i]) ≈ {xij , wij}j=1...mi , (5)

where xij is a sampled state for object i, and wij represents the approximated
probability that object i is in state xij (obviously

∑
1≤j≤mi

wij = 1).
In the beginning of each step, these samples are updated by Monte Carlo

procedures using the domain’s motion model and sensor model [6]. It is worth
noting that, the agent can not observe the actions performed by other players,
so it always assume that they will do a random kick if the ball is kickable for
them, or a random walk otherwise. Finally, the environment’s current state s is
estimated as:

s[i] =
∑

1≤j≤mi

wijxij . (6)

Transition Model Simplification Recall that, computing Equations 3, 1, and
2 recursively can find the recursive optimal policy over the MAXQ hierarchy.
However, to completely represent either the transition function T or the com-
pletion function C in the 2D domain is intractable. Some approximate methods
are applied to overcome this difficulty, as described next.

In WrightEagle, based on some pre-defined rules, the entire space of possible
state-steps pairs (s′, N) for each subtask is dynamically split into two classes:
the success class and the failure class, denoted as sucess(s, a) and failure(s, a)
respectively.

After splitting, the expected state-steps pair (called pre-state in WrightEagle)
of each class is used to represent it, which can be calculated either by Monte Carlo
methods or approximately theoretical analysis, denoted as ss and sf respectively.
Then the completion function can be approximately represented as

C(i, s, a) ≈ pV (i, ss) + (1− p)V (i, sf) , (7)

where p =
∑

(s′,N)∈sucess(s,a) T (s
′, N |s, a).

To efficiently calculate p in Equation 7, a series of approximate methods
were developed in WrightEagle. They are classified into two groups: subjective
probability based on some heuristic functions, and objective probability based
on some statistical models.

Heuristic Approximation of Value Function Some heuristic evaluation
functions (denoted as H(i, ss|s, a) and H(i, sf |s, a) respectively) were developed
to approximate V (i, ss) and V (i, sf) , because:

1. the pre-states ss and sf are hard to estimate due to the unpredictable prop-
erty of the environment, especially when they are far in the future;

2. completely recursively computing costs too much to satisfy the real-time
constraints in the 2D domain.

For each subtask, different H functions were developed, according to different
subgoals. For low level subtasks and primitive actions, the reward functions
R(s, a) are too sparse to be used directly. As a substitute, some pseudo-reward
functions are developed in WrightEagle. Take the KickTo subtask for an example,
the maximum speed that the ball can be kicked in a range of given cycles plays
a key role in the local heuristic function.

Heuristic Search in Action Space By now, we have almost solved the MAXQ
hierarchy used in WrightEagle by heuristic approximate online planning tech-
niques, but there’s still one difficulty remaining in Equation 2: as for the param-
eterized actions (including KickTo, kick, etc.), the action space is too huge to be
searched directly by some brute force algorithms.

Some heuristic search methods are introduced to deal with this issue, e.g. an
A* search algorithm with some special pruning strategy is used in the NavTo
subtask when searching the action space of dash and turn, a hill-climbing method
is used in the Pass subtask when searching the action space of KickTo, etc [7, 8].

Particularly, for the Defense subtask and its subtasks, which are more in-
volved with cooperation between agents, theoretical analysis is more difficult.
Some work has been done on this based on the decentralized partially observ-
able Markov decision processes (DEC-POMDPs) [9, 10].

2.3 RoboCup 2011 Soccer 2D Simulation League Results

In RoboCup 2011, the WrightEagle team won the champion with no lost games,
and achieved an average goal difference of 12.33 in total 12 games.3 The Helios
team, a united team from Fukuoka University, Osaka Prefecture University, and
the National Institute of Advanced Industrial Science and Technology of Japan,
won second place, and the MarliK team from University of Guilan of Iran won
third place.

3 The detailed competition results can be found at: http://sourceforge.net/apps/
mediawiki/sserver/index.php?title=RoboCup2011/Competition

3 UT Austin Villa: 3D Simulation League Champions

This section describes the RoboCup 2011 3D competition champion team, UT
Austin Villa, with particular emphasis on the main key to the team’s success: an
optimized omnidirectional walk engine. Further details about the team, including
an inverse kinematics based kicking architecture and a dynamic role assignment
and positioning system, can be found in [11].

3.1 Agent Architecture

The UT Austin Villa agent receives visual sensory information from the environ-
ment which provides distances and angles to different objects on the field. It is
relatively straightforward to build a world model by converting this information
about the objects into Cartesian coordinates. This of course requires the robot
to be able to localize itself for which the agent uses a particle filter. In addition to
the vision perceptor, the agent also uses its accelerometer readings to determine
if it has fallen and employs its auditory channels for communication.

Once a world model is built, the agent’s control module is invoked. Figure 2
provides a schematic view of the control architecture of the UT Austin Villa
humanoid soccer agent.

High Level Behavior

Walk Turn Kick

PIDPID PID PID PID

Inverse
Kinematics

Inverse Inverse Inverse Inverse
Kinematics Kinematics Kinematics Kinematics

Skills

Strategy

control
Low level

FallRise

Fig. 2: Schematic view of UT Austin Villa agent control ar-
chitecture.

At the lowest level, the hu-
manoid is controlled by spec-
ifying torques to each of its
joints. This is implemented
through PID controllers for
each joint, which take as in-
put the desired angle of the
joint and compute the ap-
propriate torque. Further, the
agent uses routines describ-
ing inverse kinematics for the
arms and legs. Given a target
position and pose for the foot or the hand, the inverse kinematics routine uses
trigonometry to calculate the angles for the different joints along the arm or the
leg to achieve the specified target, if at all possible.

The PID control and inverse kinematics routines are used as primitives to
describe the agent’s skills. In order to determine the appropriate joint angle
sequences for walking and turning, the agent utilizes an omnidirectional walk
engine which is described in subsection 3.2. When invoking the kicking skill, the
agent uses inverse kinematics to control the kicking foot such that it follows an
appropriate trajectory through the ball. This trajectory is defined by set way-
points, ascertained through machine learning, relative to the ball along a cubic
Hermite spline. Two other useful skills for the robot are falling (for instance,
by the goalie to block a ball) and rising from a fallen position. Both falling and
rising are accomplished through a programmed sequence of poses and specified
joint angles.

Because the team’s emphasis was mainly on learning robust and stable low-
level skills, the high-level strategy to coordinate the skills of the individual agents
is relatively straightforward. The player closest to the ball is instructed to go
to it while other field player agents dynamically choose target positions on the
field based on predefined formations that are dependent on the current state of
the game. For example, if a teammate is dribbling the ball, one agent positions
itself slightly behind the dribbler so that it is ready to continue with the ball if
its teammate falls over. The goalie is instructed to stand a little in front of its
goal and, using a Kalman filter to track the ball, attempts to dive and stop the
ball if it comes near.

3.2 Omnidirectional Walk Engine and Optimization

The primary key to Austin Villa’s success in the 2011 RoboCup 3D simulation
competition was its development and optimization of a stable and robust fully
omnidirectional walk. The team used an omnidirectional walk engine based on
the research performed by Graf et al. [12]. The main advantage of an omnidi-
rectional walk is that it allows the robot to request continuous velocities in the
forward, side, and turn directions, permitting it to approach its destination more
quickly. In addition, the robustness of this engine allowed the robots to quickly
change directions, adapting to the changing situations encountered during soccer
games.

Walk Engine Implementation The walk engine uses a simple set of sinusoidal
functions to create the motions of the limbs with limited feedback control. The
walk engine processes desired walk velocities given as input, chooses destinations
for the feet and torso, and then inverse kinematics are used to determine the joint
positions required. Finally, PID controllers for each joint convert these positions
into commands that are sent to the joints.

The walk first selects a trajectory for the torso to follow, and then determines
where the feet should be with respect to the torso location. The trajectory is
chosen using a double linear inverted pendulum, where the center of mass is
swinging over the stance foot. In addition, as in Graf et al.’s work [12], the
simplifying assumption that there is no double support phase is used, so that
the velocities and positions of the center of mass must match when switching
between the inverted pendulums formed by the respective stance feet.

The walk engine is parameterized using more than 40 parameters, ranging
from intuitive quantities, like the step size and height, to less intuitive quan-
tities like the maximum acceptable center of mass error. These parameters are
initialized based on an understanding of the system and also testing them out
on an actual Nao robot. This initialization resulted in a stable walk. However,
the walk was extremely slow compared to speeds required during a competition.
We refer to the agent that uses this walk as the Initial agent.

Walk Engine Parameter Optimization The slow speed of the Initial agent
calls for using machine learning to obtain better walk parameter values. Parame-
ters are optimized using the CMA-ES algorithm [13], which has been successfully
applied in [14]. CMA-ES is a policy search algorithm that successively generates
and evaluates sets of candidates. Once CMA-ES generates a group of candi-
dates, each candidate is evaluated with respect to a fitness measure. When all
the candidates in the group are evaluated, the next set of candidates is gener-
ated by sampling with probability that is biased towards directions of previously
successful search steps.

As optimizing 40 real-valued parameters, can be impractical, a carefully cho-
sen subset of 14 parameters was selected for optimization while keeping all the
other parameters fixed. The chosen parameters are those that have the highest
potential impact on the speed and stability of the robot, for instance: the max-
imum step sizes, rotation, and height; the robot’s center of mass height, shift
amount, and default position; the fraction of time a leg is on the ground and the
time allocated for one step phase; the step size PID controller; center of mass
normal error and maximum acceptable errors; and the robot’s forward offset.

Similarly to a conclusion from [14], Austin Villa has found that optimization
works better when the robot’s fitness measure is its performance on tasks that
are executed during a real game. This stands in contrast to evaluating it on a
general task such as the speed walking straight. Therefore, the robot’s in-game
behavior is broken down into a set of smaller tasks, and the parameters for each
one of these tasks is sequentially optimized. When optimizing for a specific task,
the performance of the robot on the task is used as CMA-ES’s fitness value for
the current candidate parameter set values.4

In order to simulate common situations encountered in gameplay, the walk
engine parameters for a goToTarget subtask are optimized. This consists of an
obstacle course in which the agent tries to navigate to a variety of target posi-
tions on the field. The goToTarget optimization includes quick changes of tar-
get/direction for focusing on the reaction speed of the agent as well as holding
targets for longer durations to improve the straight line speed of the agent. Addi-
tionally the agent is instructed to stop at different times during the optimization
to ensure that is stable and doesn’t fall over when doing so. In order to encourage
both quick turning behavior and a fast forward walk, the agent always walks and
turns toward its designated target at the same time. This allows for the agent
to swiftly adjust and switch its orientation to face its target, thereby empha-
sizing the amount of time during the optimization that it is walking forward.
Optimizing the walk engine parameters in this way resulted in a significant im-
provement in performance with the GoToTarget agent able to quickly turn and
walk in any direction without falling over. This improvement also showed itself
in actual game performance as when the GoToTarget agent played 100 games

4 Videos of the agent performing optimization tasks can be found online at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2011/html/walk.html

against the Initial agent, the GoToTarget agent won on average by 8.82 goals
with a standard error of .11.

To further improve the forward speed of the agent, a second walk engine pa-
rameter set was optimized for walking straight forward. This was accomplished
by running the goToTarget subtask optimization again, but this time the go-
ToTarget parameter set was fixed while a new parameter set, called the sprint
parameter set, was learned. The sprint parameter set is used when the agent’s
orientation is within 15◦ of its target. By learning the sprint parameter set in
conjunction with the goToTarget parameter set, the new Sprint agent was stable
switching between the two parameter sets and also increased the agent’s speed
from .64 m/s to .71 m/s as timed when walking forward for ten seconds after
starting from a standstill.

Fig. 3: UT Austin Villa walk parameter optimization pro-
gression. Circles represent the set(s) of parameters used by
each agent during the optimization progression while the ar-
rows and associated labels above them indicate the optimiza-
tion tasks used in learning. Parameter sets are the following:
I = initial, T = goToTarget, S = sprint, P = positioning.

Although adding the go-
ToTarget and sprint walk en-
gine parameter sets improved
the stability, speed, and game
performance of the agent, the
agent was still a bit slow
when positioning to dribble
the ball. This slowness makes
sense because the goToTarget
subtask optimization empha-
sizes quick turns and forward walking speed while positioning around the ball
involves more side-stepping to circle the ball. To account for this discrepancy,
the agent learned a third parameter set called the positioning parameter set.
To learn this new parameter set a driveBallToGoal2 optimization was created in
which the agent is evaluated on how far it is able to dribble the ball over 15
seconds when starting from a variety of positions and orientations from the ball.
The positioning parameter set is used when the agent is within .8 meters of the
ball. Both goToTarget and sprint parameter sets are fixed and the optimization
naturally includes transitions between all three parameter sets, which constrains
them to be compatible with each other. Adding both the positioning and sprint
parameter sets further improved the agent’s performance such that it, the Fi-
nal agent, was able to beat the GoToTarget agent by an average of .24 goals
with a standard error of .08 across 100 games. A summary of the progression in
optimizing the three different walk parameter sets can be seen in Figure 3.

3.3 RoboCup 2011 Soccer 3D Simulation League Results

The UT Austin Villa team won the 2011 RoboCup 3D simulation competition
in convincing fashion by winning all 24 matches it played, scoring 136 goals and
conceding none. The CIT3D team, from Changzhou Institute of Technology of
China, came in second place while the Apollo3D team, from Nanjing University
of Posts and Telecommunications of China, finished third. The success UT Austin
Villa experienced during the competition was no fluke as when playing 100 games
against each of the other 21 teams’ released binaries from the competition, the

UT Austin Villa team won by at least an average goal difference of 1.45 against
every team. Furthermore, of these 2100 games played, UT Austin Villa won all
but 21 of them which ended in ties (no losses). The few ties were all against three
of the better teams: Apollo3D, Bold Hearts, and RoboCanes. We can therefore
conclude that UT Austin Villa was the rightful champion of the competition.

While there were multiple factors and components that contributed to the
success of the UT Austin Villa team in winning the competition, its omnidirec-
tional walk was the one which proved to be the most crucial. When switching
out the omnidirectional walk developed for the 2011 competition for a fixed skill
based walk used in the 2010 competition, and described in [14], the team did
not fare nearly as well. The agent with the previous year’s walk had a negative
average goal differential against nine of the teams from the 2011 competition,
suggesting a probable tenth place finish. Also this agent lost to our Final agent
by an average of 6.32 goals across 100 games with a standard error of .13. One
factor that did not come into play in UT Austin Villa winning the competition,
however, was its goalie. The team’s walk allowed it to dominate possession of
the ball and keep it away from the opposing team such that the opponent never
had a chance to shoot on the goal, and thus the goalie never touched the ball
during the course of gameplay.

4 Conclusion

This paper introduced the champions of the RoboCup 2011 simulation leagues.
First, we described the MAXQ hierarchical structure of WrightEagle, and

the online planning method combining with heuristic and appropriate techniques
over this hierarchy. Based on this effort, The WrightEagle team has a very flexible
and adaptive strategy, particularly for unfamiliar teams. It has won 3 champi-
onships and 4 runner-ups in the past 7 years of RoboCup competitions.5

Second, we described the learning-based omnidirectional walk of UT Austin
Villa, and the series of fitness functions that were employed during learning. The
resulting walk was quick, agile, and stable enough to dribble around most of the
other teams in the competition. 2011 was the first victory for UT Austin Villa
in the 3D simulation league.6

Acknowledgments

The authors would like to thank the additional contributing members of WrightEagle
(Feng Wu, Zongzhang Zhang, Haochong Zhang and Guanghui Lu) and UT Austin Villa
(Shivaram Kalyanakrishnan, Frank Barrera, Nick Collins, Adrian Lopez-Mobilia, Art
Richards, Nicu Stiurca, and Victor Vu).

5 More information about the WrightEagle team can be found at the team’s website:
http://www.wrighteagle.org/2d

6 More information about the UT Austin Villa team, as well as video highlights from
the competition, can be found at the team’s website:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

The work of WrightEagle is supported by the Natural Science Foundations of China
under Grant No. 60745002, and No. 61175057, as well as the National Hi-Tech Project
of China under Grant No. 2008AA01Z150.

The work of UT Austin villa took place in the Learning Agents Research Group
(LARG) at the Artificial Intelligence Laboratory, The University of Texas at Austin.
LARG research is supported in part by grants from the National Science Founda-
tion (IIS-0917122), ONR (N00014-09-1-0658), and the Federal Highway Administration
(DTFH61-07-H-00030).

References

1. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc. (1994)

2. Dietterich, T.G.: The MAXQ method for hierarchical reinforcement learning. Pro-
ceedings of the fifteenth international conference on machine learning (1998) Vol-
ume: 8, Issue: c, Publisher: Morgan Kaufmann, Pages: 118-126 (1999)

3. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112 (1999)
181–211

4. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Machine Learning Research 13 (1999) 63

5. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101 (1998) 99–134

6. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile
robots. In: Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C). Volume 2., IEEE (2001) 1322–1328

7. Fan, C., Chen, X.: Bounded incremental real-time dynamic programming. In:
Frontiers in the Convergence of Bioscience and Information Technologies. (2007)
637–644

8. Shi, K., Chen, X.: Action-driven markov decision process and the application in
robocup. Journal of Chinese Computer Systems 32 (2011) 511 – 515

9. Wu, F., Chen, X.: Solving large-scale and sparse-reward dec-pomdps with
correlation-mdps. Lecture Notes in Computer Science 5001 (2008) 208219

10. Wu, F., Zilberstein, S., Chen, X.: Online planning for multi-agent systems with
bounded communication. Artificial Intelligence 175 (2011) 487–511

11. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion
agent in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2012). (2012)

12. Graf, C., Härtl, A., Röfer, T., Laue, T.: A robust closed-loop gait for the standard
platform league humanoid. In: Proc. of the 4th Workshop on Humanoid Soccer
Robots in conjunction with the 2009 IEEE-RAS Int. Conf. on Humanoid Robots.
(2009) 30 – 37

13. Hansen, N.: The CMA Evolution Strategy: A Tutorial. (2009) http://www.lri.

fr/~hansen/cmatutorial.pdf.
14. Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., Stone, P.: On optimiz-

ing interdependent skills: A case study in simulated 3D humanoid robot soccer.
In: Proc. of the Tenth Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011). (2011) 769–776

