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Abstract
State abstraction is an important technique for scal-
ing MDP algorithms. As is well known, however,
it introduces difficulties due to the non-Markovian
nature of state-abstracted models. Whereas prior
approaches rely upon ad hoc fixes for this issue, we
propose instead to view the state-abstracted model
as a POMDP and show that we can thereby take ad-
vantage of state abstraction without sacrificing the
Markov property. We further exploit the hierarchi-
cal structure introduced by state abstraction by ex-
tending the theory of options to a POMDP setting.
In this context we propose a hierarchical Monte
Carlo tree search algorithm and show that it con-
verges to a recursively optimal hierarchical policy.
Both theoretical and empirical results suggest that
abstracting an MDP into a POMDP yields a scal-
able solution approach.

1 Introduction
Markov decision processes (MDPs) provide a rich framework
for planning and learning under uncertainty. In this paper, we
focus on the problem of online planning in MDPs. An online
planning algorithm finds the best action for the current state
by exploring an expectimax search tree starting from the cur-
rent state [Barto et al., 1995; Hansen and Zilberstein, 2001;
Kocsis and Szepesvári, 2006]. Take Monte Carlo tree search
(MCTS) [Browne et al., 2012] as an example. It has been
observed that the performance of MCTS is typically dom-
inated by the effective search depth [Kearns et al., 2002;
Hostetler et al., 2014], which in turn is determined by the
branching factor of the search tree. In MDPs, the branching
factor consists of action branching and stochastic branching.
Action branching depends on the number of available actions;
stochastic branching depends on the number of possible out-
comes for an action. Most online planning algorithms build
search trees in the ground state space; for large problems, the
branching factor leads to poor performance as the feasible
search depth is too small.

State abstraction is an important technique for reducing the
stochastic branching factor by treating a group of states as a
unit [Dearden and Boutilier, 1997; Li et al., 2006]. The space
of abstract states is typically much smaller than the original

concrete state space. However, abstraction results in a non-
Markovian model, because the transition probability of reach-
ing the next abstract state and the reward received by taking
an action within an abstract state depend on the occupancy
probability over concrete states represented by that abstract
state. The occupancy probability depends on the history of
all past actions and abstract states. As an example, in the
3-state MDP depicted in Figure 1a, an edge represents a de-
terministic transition that is invoked by executing the labeled
action. If we group states 1 and 2 into an abstract state S

1,2,
then the probability of reaching state 3 after taking action a in
S
1,2 equals the probability of being actually in state 1, which

depends exactly on the number of times that the agent has ex-
ecuted action b in ground state 1 and action a in ground state
2 in the past history prior to entering state 3.

Safe state abstraction methods avoid the non-Markovian
problem by ignoring only irrelevant state variables [Diet-
terich, 1999b; Andre and Russell, 2002] or exploiting par-
ticular structure in the transition function (e.g., bisimulation
and homomorphism) [Dearden and Boutilier, 1997; Givan et
al., 2003; Jiang et al., 2014; Anand et al., 2015]. Such meth-
ods result in (near) lossless abstractions but are often inap-
plicable. One popular proposal to resolve this situation is to
introduce an ad hoc weighting function (a.k.a. an aggrega-
tion probability), which functions like an occupancy proba-
bility for each concrete state given the abstract state [Bert-
sekas, 1995; Singh et al., 1995; Li et al., 2006]. Superficially,
this ensures that the abstract transition and reward functions
can be written in a Markovian way. It is usually assumed
that the weighting function is manually specified and remains
constant in computation. We argue that such approaches can-
not be accurate enough to capture the true dynamics of the
abstract system, where the occupancy probability is in fact
non-stationary, depending on the whole history of past ac-
tions and abstract states, or in other words, the policy being
computed/executed!

In this paper, we show that a ground MDP with state ab-
straction turns out to be a POMDP with the original ground
MDP as the underlying MDP and the set of abstract states as
the set of observations. Belief states in the resulting POMDP
replace the otherwise necessary weighting function, with the
advantage that the belief state can be calculated by Bayesian
updating. We show that algorithms such as POMCP can be
naturally extended to do online planning for the ground MDP.
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Observing that the set of abstract states introduces automati-
cally a hierarchical structure, we further define temporal tran-
sitions between abstract states as abstract actions by extend-
ing the theory of options [Sutton et al., 1999] to a POMDP
setting, and develop a hierarchical MCTS algorithm that han-
dles Markovian state and action abstractions for MDPs within
a POMDP formulation. Theoretically, we show that the per-
formance loss in terms of action values due to approximation
in state abstraction is bounded by a constant multiple of a
state aggregation error introduced by grouping states with dif-
ferent optimal actions; the resulting algorithm converges to a
recursively optimal hierarchical policy consistent with the in-
put state and action abstractions. Perhaps counterintuitively,
we find that a hierarchical MCTS algorithm solving the ab-
stracted POMDP can outperform ground MCTS by orders of
magnitude.

2 Background
2.1 MDPs and POMDPs
An MDP is a tuple hS,A, T,R, �i, where S and A are the
state and action spaces, T (s0|s, a) and R(s, a) are the transi-
tion and reward functions, and � is a discount factor [Bell-
man, 1957]. A solution for an MDP is an optimal policy
⇡⇤

: S ! A that maximizes the expected cumulative dis-
counted reward (the value function) for all states. The optimal
value function V ⇤ satisfies the Bellman equation:

V ⇤
(s) = max

a2A

(

R(s, a) + �
X

s02S

T (s0|s, a)V ⇤
(s0)

)

. (1)

A partially observable MDP, or POMDP, is a tuple
hS,A,Z, T,R,⌦, �i, where Z is the observation space
and ⌦(z|s, a) is the observation function. A sequence
of actions and observations defines a history h =

{a
0

, z
1

, a
1

, z
2

· · · , at�1

, zt}, which determines uniquely a
belief state b with b(s|h) being the probability of being in
state s given h. Let end(h) be the last observation in h and
let B and H be the set of all belief states and histories re-
spectively. A POMDP can be equivalently transformed into
an MDP defined over the belief space B (or the history space
H). The Bellman equation for a POMDP in terms of histories
is as follows:

V ⇤
(h) = max

a2A

(

R(h, a) + �
X

z2Z

Pr(z|h, a)V ⇤
(haz)

)

,

(2)
where R(h, a) =

P

s2S R(s, a)b(s|h), Pr(z|h, a) is the
probability of observing z after taking action a at history h,
and haz denotes the history resulting from taking action a at
history h and observing z afterwards.

2.2 Monte Carlo Tree Search
For online planning in (PO)MDPs, the idea of MCTS is to
build a best-first search tree by simulating a tree policy and a
rollout policy to estimate the optimal action values using sam-
pled trajectories. Upper confidence bounds for trees (UCT) is
one of the most popular implementations of MCTS for MDPs
using the UCB action-selection heuristic to guide the tree

(a) A 3-state MDP. (b) The rooms example.

Figure 1: State abstraction examples.

search [Kocsis and Szepesvári, 2006]. Partially observable
Monte Carlo planning (POMCP) extends UCT to POMDPs
by employing particle filtering and root sampling, where each
simulation starts with a state sampled from the belief state
b(s|h) represented as a set of particles at the root node [Silver
and Veness, 2010].

3 The Approach
3.1 State Abstraction
Consider a ground MDP M = hS,A, T,R, �i. Let X =

{x
1

, x
2

, · · · } be a partition on S, and ' : S ! X be an ab-
straction function, such that '(s) 2 X is the abstract state
corresponding to ground state s. As an example, Figure 1b
illustrates a rooms domain, where a robot needs to navigate
from position S to position G. In the figure, black cells rep-
resent walls; all other cells are valid ground states. Cells
sharing the same color correspond to the same abstract state,
which in turn represents a room.

A so-called weighting function w has been introduced in
the literature to ensure that the abstract transition and reward
functions can be written in a Markovian way:

T'(x
0|x, a) =

X

'(s)=x

X

'(s0)=x0

T (s0|s, a)w(s, x), (3)

and
R'(x, a) =

X

'(s)=x

R(s, a)w(s, x), (4)

where w(s, x) approximates the abstract-state-specific occu-
pancy probability Pr(s|x) of being in ground state s given
that the agent is in abstract state x [Bertsekas, 1995; Li et al.,
2006]. An abstract MDP hX,A, T', R', �i is then defined
on the abstract space X . Solving this abstract MDP gives a
policy ⇡' : X ! A, which can be translated to the ground
MDP M . The problem here is that the true occupancy proba-
bility Pr(s|h), with h being the whole history of past actions
and abstract states, is non-stationary. It cannot reasonably be
approximated as a constant weighting function conditioned
only on abstract state; in fact, it follows a Bayesian update

Pr(s0|hax) = ⌘1[x = '(s0)]
X

s2S

T (s0|s, a) Pr(s|h), (5)

where 1 is the indicator function and ⌘ is a normalizing fac-
tor. On the other hand, if we introduce ⌦ as a conditional
probability function such that ⌦(x|s) = 1[x = '(s)] for any
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x 2 X and s 2 S, then the abstract problem turns out to
be a POMDP hS,A,X, T,R,⌦, �i with X and ⌦ being the
observation space and the observation function respectively.
We denote the resulting POMDP by POMDP(M,') indicat-
ing that it is created by applying abstraction function ' on the
ground MDP M .

From a POMDP perspective, the weighting function ap-
proach actually tries to approximate the belief state b(s|h)
using a constant distribution w(s, x) with end(h) = x, and
finds a memoryless policy ⇡' as a mapping from observa-
tion space X to action space A. It has been shown that a
memoryless policy for a POMDP can be arbitrarily worse
than an optimal policy for the POMDP, which in turn can
be arbitrarily worse than an optimal policy for the underly-
ing MDP [Singh et al., 1994]. Thus, the weighting func-
tion approach is not well motivated from a POMDP point
of view. In contrast, finding directly a near-optimal policy
for POMDP(M,') could be a considerably better choice for
planning with state abstraction over the ground MDP M . Ad-
ditionally, bounded optimality results within the POMDP for-
mulation can also be established given a bounded state ab-
straction.

Exactly solving POMDP(M,') via a dynamic program-
ming method such as value iteration is usually infeasible due
to the continuous nature of the belief space. However, from
an online planning point of view, it can be observed that
the search tree in POMDP(M,') typically has a much lower
branching factor than in the ground MDP M . This makes it
feasible to use approximate, search-based solution techniques
for solving POMDP(M,'). More precisely, a search-based
online planning algorithm running in M starting from state
s
0

builds an expectimax tree T (s
0

) with actions as the ex-
pectation nodes and states as the maximization nodes. The
branching factor of T (s

0

) is bounded by |A|B, where B is the
maximal number of possible outcomes for any state–action
pair. A similar expectimax tree T (b

0

) with the same actions
as the expectation nodes and belief states as the maximization
nodes can be built by running a search-based online planning
algorithm in POMDP(M,') starting from belief state b

0

with
b
0

(s) = 1[s = s
0

]. The branching factor of T (b
0

) is bounded
by |A|B0 where B0 is the maximal number of possible obser-
vations (i.e., abstract states) for any belief–action pair. Gen-
erally, we have |A|B0 < |A|B, if B0 < B which holds for
most abstractions due to the fact that B  |S|, B0  |X|
and |X| ⌧ |S|. Therefore, a search-based online planning
algorithm running in POMDP(M,') resulting from abstrac-
tion could be much more efficient than running directly in the
ground MDP M in terms of exploring the underlying expec-
timax search tree.

In this paper, we employ a POMCP algorithm running
within POMDP(M,') to find an online policy for the ground
MDP with state abstraction, and refer to the resulting al-
gorithm as POMCP(M,'). The online policy produced by
POMCP(M,') can be translated naturally to M , given the
fact that when the agent is in ground state s, it can conclude
that the respective belief state satisfies b(s0) = 1[s0 = s] for
any s0 2 S. Since we are using a Monte Carlo algorithm
to build the search tree, it is not necessary to have explicit
representations of the underlying transition and reward func-

tions for the ground MDP M . Only a generative model as a
simulator of M is needed. Another important advantage with
POMCP(M,') is that it can be extended naturally to prob-
lems with continuous state spaces without significant mod-
ifications, given suitable abstraction functions defined over
continuous states.

3.2 Action Abstraction
The proposed approach of state abstraction, we suggest,
typically results in a search tree with a lower stochastic
branching factor. The complementary approach of action
abstraction (a.k.a. temporal abstraction) can increase the ef-
fective search depth by considering high-level actions com-
posed from many concrete actions [Parr and Russell, 1998;
Sutton et al., 1999; Dietterich, 1999a; Barto and Mahadevan,
2003]. A given state abstraction naturally induces an action
abstraction, where abstract actions connect abstract states in
a one high-level step.

We extend Sutton’s options framework to a POMDP set-
ting to model abstract actions within POMDP(M,'). A tem-
poral transition from an abstract state x 2 X to one of its
neighbors y 2 X is considered a named option ox!y , which
is defined as a tuple hI,⇡,�i. Here, I is the initiation set
I = {h | h 2 H ^ end(h) = x} indicating that ox!y

is executable only at a history ending with observation x,
⇡ : H ! A is a local policy for ox!y defined over H and
� is a termination condition with �(h) = 1 if end(h) = y,
and �(h) = 0 otherwise. In the rooms domain, for example,
oA!B is an option moving the agent from room A to room
B, which is executable only if the agent observes that it is in
room A, and terminates when the agent observes that it is in
room B.

Let O be the set of options consisting of all possible direct
transitions between abstract states. The set O can either be
constructed manually by utilizing the neighboring relation-
ship between abstract states, or learned incrementally from
an empty set by introducing a new option each time a new
abstract-state transition has been observed in a Monte Carlo
simulation process. In this paper, we assume the former case
for convenience, so the set of options is fixed in advance. The
main results can also be extended to the latter case. It is not
necessary to specify the local policy for each option before-
hand. In fact, the proposed algorithm learns the high-level
option-selection policy and the low-level, local option poli-
cies simultaneously via Monte Carlo simulation.

The overall option-selection policy µ is defined as a map-
ping from histories to options µ : H ! O. Let ⇡o be
the local policy of option o. The hierarchical policy as a
set of policies ⇧ = {µ,⇡o1 ,⇡o2 , · · · } represents a hierar-
chical solution for POMDP(M,'), where µ corresponds to
the root task and the ⇡os correspond to its subtasks. Given
⇧, in a hierarchical control mode, the agent selects an option
o = µ(ht) when initiated in a history ht, and follows the op-
tion o according to ⇡o until it terminates in ht+k (k � 1), at
which point a new option µ(ht+k) is selected; in a polling
control mode, the agent executes the action suggested by
the current option µ(ht) selected by µ at history ht, regard-
less of which option is selected at the last timestep. It has
been shown that the polling execution of a hierarchical pol-
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Agent(s
0

: initial state, ' : abstraction function,
⇧rollout : rollout policy)
h ?
P(h) {s

0

}
repeat

T  an empty search tree
a OnlinePlanning(h, T ,',⇧rollout)
Execute a and observe abstract state x
h hax
P(h) ParticleFilter(P(h), a, x)

until termination conditions

Rollout(t : task, s : state, h : history, d : depth,
' : abstraction function, ⇧rollout : rollout policy)

if d � H or t terminates at h then
return h0, 0, h, si

else
a GetPrimitive(⇧rollout, t, h)
hs0, r0i  Simulate(s, a)
x '(s0)
hr00, n, h00, s00i  
Rollout(t, s0, hax, d+ 1,',⇧rollout)
r  r0 + �r00
return hr, n+ 1, h00, s00i

GetGreedyPrimitive(t : task, h : history)
if t is primitive then

return t
else

a⇤  argmaxa Q[t, h, a]
return GetGreedyPrimitive(a⇤, h)

GetPrimitive(⇧ : policy, t : task, h : history)
if t is primitive then

return t
else

return GetPrimitive(⇧,⇡t(h), h)

OnlinePlanning(h : history, T : search tree,
' : abstraction function, ⇧rollout : rollout policy)

repeat
s ⇠ P(h)
Search(root task, s, h, 0, T ,',⇧rollout)

until resource budgets reached
return GetGreedyPrimitive(root task, h)

Search(t : task, s : state, h : history, d : depth,
T : search tree, ' : abstraction function,
⇧rollout : rollout policy)

if t is primitive then
hs0, ri ⇠ Simulate(s, t)
x '(s0)
return hr, 1, htx, s0i

else
if d � H or t terminates at h then

return h0, 0, h, si
else

if node ht, hi is not in tree T then
Insert node ht, hi to T
return Rollout(t, s, h, d,',⇧rollout)

else
a⇤  argmaxa

n

Q[t, h, a] + c
q

logN [t,h]
N [t,h,a]

o

hr0, n0, h0, s0i  
Search(a⇤, s, h, d, T ,',⇧rollout)
hr00, n00, h00, s00i  
Search(t, s0, h0, d+ n0, T ,',⇧rollout)

N [t, h] N [t, h] + 1

N [t, h, a⇤] N [t, h, a⇤] + 1

r  r0 + �n0
r00

Q[t, h, a⇤] Q[t, h, a⇤] + r�Q[t,h,a⇤
]

N [t,h,a⇤
]

return hr, n0
+ n00, h00, s00i

Figure 2: POMCP(M,',O) — Markovian state and action abstractions for MDPs via hierarchical MCTS.

icy ⇧ yields higher expected value than the hierarchical ex-
ecution of the same hierarchical policy [Sutton et al., 1999;
Dietterich, 1999a]. In this paper, we develop a hierarchical
MCTS algorithm with state and action abstractions accord-
ing to the value function decomposition as in the hierarchi-
cal control mode, but run the algorithm empirically as in the
polling control mode.

In the hierarchical control mode, let V µ
(h) be the value

of following µ starting from history h, and let Qµ
(h, o) be

the value of executing option o at history h and following µ
thereafter. Let |h| be the number of action–observation pairs
of history h. It turns out that V µ

(h) = Qµ
(h, µ(h)), and

Qµ
(h, o) = V ⇡o

(h) +
X

h02H
�|h0|�|h|

Pr(h0|h, o)V µ
(h0

),

(6)
where Pr(h0|h, o) — the termination distribution of option o
— gives the probability that o terminates at history h0 after
|h0|� |h| timesteps. Here, V ⇡o

(h) gives the value of follow-

ing option o starting from history h, which can be further ex-
pressed as V ⇡o

(h) = Q⇡o
(h,⇡o(h)), where Q⇡o

(h, a) gives
the value of executing the primitive action a at history h and
following o thereafter, i.e.

Q⇡o
(h, a) = R(h, a) + �

X

x2X

Pr(x|h, a)V ⇡o
(hax). (7)

Combining policy evaluation with policy improvement, an
optimal hierarchical policy ⇧

⇤
= {µ⇤,⇡⇤

o1 ,⇡
⇤
o2 , · · · } can

be computed in principle by iteratively applying V µ⇤
(h) =

maxo Q
µ⇤
(h, o) and V ⇡⇤

o
(h) = maxa Q

⇡⇤
o
(h, a). The prob-

lem here is that the termination distributions are unknown
for the agent, because complete options with local policies
are not assumed to be provided in advance, and estimating
the termination distribution of an option implies that the lo-
cal policy of the option is known. Instead, the agent has to
find near-optimal policies for the root task and its subtasks
simultaneously. We alleviate this problem by conducting a
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series of nested MCTS (namely POMCP) processes over the
hierarchy. A high-level search tree for the root task is built
by running MCTS with options as the macro actions. Each
option builds its own sub-search tree via a nested MCTS pro-
cess. In the search step, when simulating an option, its own
sub-search tree is used to evaluate its Q-value. The leaf nodes
of a sub-search tree serve as the next nodes of the high-level
search tree. The simulation inside the sub-search tree is di-
rected by its own tree and rollout policies, which guide the
simulation in accomplishing the subtask corresponding to this
option. It is also possible to design option-specific informa-
tive (rather than purely random) rollout policies for particular
options, which is usually easier than designing an informative
rollout policy for the ground MDP. In the back-propagation
step, Q-values are updated according to Equations 6 and 7.
This learning-by-simulation process ensures that the local
policies of options as well as their termination distributions
converge simultaneously. Given converged low-level policies
and their termination distributions, the high-level policy con-
verges in the limit as well. The resulting algorithm is de-
noted by POMCP(M,',O) indicating that it is a hierarchical
MCTS algorithm running in POMDP(M,') resulting from
doing state and action abstractions on the ground MDP M
with ' as the state abstraction function and O as the set of
abstract actions.

3.3 The Main Algorithm
The main algorithm POMCP(M,',O) is outlined in Figure
2. In the algorithm, the root task, its subtasks (modeled as op-
tions) and primitive actions are considered uniformly as tasks.
For example, a task as a parameter of the Search function
could be either the root task, or one of the options, or one
of the primitive actions. The algorithm builds a search tree
for each task, up to the maximal planning horizon H , in the
space of histories consistent with the hierarchy defined by the
input abstraction function '. The belief state corresponding
to a history h is represented as a set of particles, denoted by
P(h), which are updated using a particle filter. In the im-
plementation, we do not need to explicitly maintain h as a
full sequence of actions and observations. Instead, we use a
hash value of h as an index, and update it incrementally, i.e.
hash(haz) = hash combine(hash(h), a, z).

We now describe the subroutines in more detail. The
GetPrimitive function returns a primitive action at his-
tory node h for task t suggested by a hierarchical policy ⇧.
It recursively finds the right action suggested by the current
task t according to ⇡t 2 ⇧ until it reaches a primitive ac-
tion. In particular, the GetGreedyPrimitive function
returns the greedy action at history h for task t suggested by
the hierarchical policy represented by the current search tree
and action values. The Rollout function uses a hierarchical
rollout policy ⇧rollout to run a sequence of Monte Carlo sim-
ulations in a polling control mode according to the generative
model of the ground MDP which is encoded in the function
Simulate It returns a tuple hr, n, h, si where r is the sum
of sampled rewards, n is the total number of steps, h is the re-
sulting history and s is the final state which follows the belief
state corresponding to h.

The Search function builds a search tree for each task

in the space of histories constrained by the hierarchy. For
a primitive action, it simply runs a one-step simulation and
returns the result encoded in a tuple. For a non-primitive
action t which could either be the root task or one of its
subtasks, it returns the result returned by a Rollout sub-
routine if the node ht, hi is not already in the tree, other-
wise it 1) selects a greedy (macro) action a⇤ for task t ac-
cording to the UCB action-selection heuristic, 2) invokes a
nested search process for the selected (macro) action a⇤ with
the same state s, history h and depth d as the input parame-
ters, 3) recursively explores the current search tree starting
from the history h0 and state s0 returned by the search of
a⇤, and 4) updates estimated Q-values according to Equa-
tion 6 for the root task or Equation 7 for an option. More
precisely, Q[root task, h, a] ⇡ Qµ

(h, a), where µ is the high-
level policy represented by the high-level search tree, and a is
an option executable at history h; and Q[t, h, a] ⇡ Q⇡t

(h, a),
where t is an option, ⇡t is the local policy represented by the
nested search tree of t, and a is a primitive action

The OnlinePlanning function runs in an anytime fash-
ion. At each iteration, it samples a state s from the belief state
represented as a set of particles corresponding to h, and in-
vokes a hierarchical search process for the root task from his-
tory h and sampled state s by calling Search. It finally re-
turns a greedy primitive action according to the current search
tree and action values. The Agent function is the overall
procedure interacting with the environment in a polling con-
trol mode. It calls OnlinePlanning to select a primitive
action, executes it, observes the resulting abstract state, and
updates particles repeatedly. It is worth noting that in prac-
tice the algorithm can also take advantage of the fact that at
the root node of the search tree the agent actually has access
to the true ground state, in which case the set of particles at
the root node contains only one single state. This does not
change the fact that the algorithm is searching in the space of
belief states due to the way the tree is expanded and the value
functions are updated.

4 Theoretical Results
4.1 Optimality Results with State Abstraction
Inspired by the abstraction criteria introduced in [Hostetler et
al., 2014], we define aggregation error as follows
Definition 1. The aggregation error of state abstraction
hX,'i for a ground MDP M = hS,A, T,R, �i is e, if
9̊a 2 A, such that for all x 2 X , '(s) = x and d 2 [0, H],
|Vd(s)�Qd(s, å)|  e, where Vd and Qd are the optimal
value and action-value functions at depth d in the search tree
of M , and H is the maximal planning horizon.

A bounded aggregation error requires that the action-value
of å is close to the optimal value for all ground states within
the same abstract state x. Particularly, e = 0 implies that all
ground states within the same abstract state share the same
optimal action. Computing exactly the aggregation error im-
plies solving the entire ground MDP completely which is usu-
ally infeasible, but this doesn’t change the fact that such ag-
gregation error exists and measures the approximation error
introduced by grouping states that have different optimal ac-
tions when doing state abstraction.
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Theorem 1. For state abstraction hX,'i for a ground
MDP M = hS,A, T,R, �i with aggregation error e, let
s
0

be the current state in the ground MDP M and let
h
0

with P(h
0

) = {s
0

} be the corresponding history in
POMDP(M,'). Let Q⇤

(s, ·) and Q⇤
(h, ·) be the optimal

action values of M and POMDP(M,') respectively. Let
a⇤ = argmaxa2A Q⇤

(h
0

, a) be the optimal primitive action
found in POMDP(M,') at history h

0

, and define an action-
value error as E(a⇤) = |maxa2A Q⇤

(s
0

, a)�Q⇤
(s

0

, a⇤)|.
Suppose the maximal planning horizon is H , then E(a⇤) is
bounded by E(a⇤)  2He if � = 1, else E(a⇤)  2� 1��H

1�� e.

Proof. Consider the search trees of M and POMDP(M,').
We define a specific action-value error for history h and ac-
tion a at depth d in the search tree of POMDP(M,') to be:

Ed(h, a) =

�

�

�

�

�

Qd(h, a)�
X

s2S

b(s|h)Qd(s, a)

�

�

�

�

�

, (8)

where Qd(s, ·) and Qd(h, ·) are optimal action values at depth
d in the search trees of M and POMDP(M,') respectively.
By applying Bellman equations, we have

Ed(h, a) = �

�

�

�

�

�

X

h02H
Pr(h0|h, a)Vd+1

(h0
)

�
X

s2S

b(s|h)
X

s02S

T (s0|s, a)Vd+1

(s0)

�

�

�

�

�

= �

�

�

�

�

�

X

h02H
Pr(h0|h, a)Vd+1

(h0
)

�
X

s02S

Vd+1

(s0)
X

s2S

b(s|h)T (s0|s, a)
�

�

�

�

�

. (9)

Noticing that

Pr(s0|h, a) =
X

s2S

T (s0|s, a)b(s|h)

=

X

h02H
b(s0|h0

) Pr(h0|h, a), (10)

it follows that

Ed(h, a) = �

�

�

�

�

�

X

h02H
Pr(h0|h, a)Vd+1

(h0
)

�
X

h02H
Pr(h0|h, a)

X

s02S

b(s0|h0
)Vd+1

(s0)

�

�

�

�

�

 �
X

h02H
Pr(h0|h, a)
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Vd+1

(h0
)

�
X

s02S

b(s0|h0
)Vd+1

(s0)

�

�

�
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, (11)

by applying the triangle inequality. On the other hand, since
�

�

�

�

�

Vd(h)�max

a2A

X

s2S

b(s|h)Qd(s, a)

�

�

�

�

�

 max

a2A
Ed(h, a), (12)

and
�

�

�

�

�

max

a2A

X

s2S

b(s|h)Qd(s, a)�
X

s2S

b(s|h)Vd(s)

�

�

�

�

�


X

s2S

b(s|h)
�

�

�

�

�

Qd(s, å)� Vd(s)

�
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 e, (13)

we have
�

�

�

�

�

Vd(h)�
X

s2S

b(s|h)Vd(s)

�

�

�

�

�

 max

a2A
Ed(h, a) + e. (14)

Therefore,

Ed(h, a)  �

"

X

h02H
Pr(h0|h, a)max

a02A
Ed+1

(h0, a0) + e

#

 �



max

h02H,a02A
Ed+1

(h0, a0) + e

�

, (15)

for all h 2 H and a 2 A. Let E(d) = maxh2H,a2A Ed(h, a).
We get E(d)  �[E(d + 1) + e]. At terminal nodes, both
QH(h, ·) and QH(s, ·) equal 0, so E(H) = 0. Therefore,
E(d)  (H � d)e if � = 1, otherwise E(d)  � 1��H�d

1�� e.
At the root node, let a⇤ = argmaxa Q0

(h
0

, a), and b⇤ =

argmaxa2A Q
0

(s
0

, a⇤). If a⇤ = b⇤, E(a⇤) = 0; other-
wise, we must have Q

0

(h
0

, a⇤) � Q
0

(h
0

, b⇤). Noticing that
P(h

0

) = {s
0

}, since |Q
0

(s
0

, b⇤) � Q
0

(h
0

, b⇤)|  E(0)

and |Q
0

(s
0

, a⇤) � Q
0

(h
0

, a⇤)|  E(0), we get E(a⇤) =

|Q
0

(s
0

, b⇤)�Q
0

(s
0

, a⇤)|  2E(0).

4.2 Convergence Results with Action Abstraction
Theorem 2. With probability 1, POMCP(M,',O) con-
verges to a recursively optimal hierarchical policy for
POMDP(M,') over the hierarchy defined by the input state
and action abstractions.

Proof. (Sketch) For a particular option, POMCP(M,',O)
finds the optimal policy with probability 1 following the con-
vergence results of POMCP in the limit. Given the fact
that, when an option converges, its termination distribution
also converges, the root task reduces to a stationary semi-
Markov Decision Process (SMDP) defined over the belief
space. POMCP(M,',O) thus finds the optimal policy in the
limit for the root task within the converged SMDP by extend-
ing the convergence results of POMCP to SMDPs. Since the
high-level policy is optimal given optimal low-level policies,
POMCP(M,',O) converges to a recursively optimal hierar-
chical policy.

5 Experiments
5.1 Rooms Domain
The ROOMS[m,n, k] problem simulates a robot navigating
in a m ⇥ n grid map containing k rooms, as depicted in
Figure 1b. The 8 primitive actions are E, SE, S, SW, W,
NW, N and NE. Each action has a probability 0.2 of mis-
take, in which case a random action is executed instead. If
any movement is going to collide with the wall, the agent
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Figure 3: Empirical results on the rooms and continuous rooms domains.

stays at its current position. Each primitive action has a re-
ward of -1. Moving into the goal has a reward of 10. In
the ground MDP, the stochastic branching factor for an ac-
tion is up to 8. With state abstraction by assuming a room
as an abstract state, the stochastic branching factor for an
action reduces to 2. An option is defined as a transition
from a room to one of its neighbors. The discount factor is
� = 0.98. The maximal planning horizon is determined as
H = blog� ✏c = 341, where ✏ is set to be 0.001. Figures
3a, 3e, 3b and 3f with x axis in log scale show the results
of running UCT, UCT', POMCP(M,'), POMCP(M,',O)
and smart-POMCP(M,',O) in ROOMS[17, 17, 4] and
ROOMS[25, 13, 8] problems, where UCT runs directly in the
ground state space, UCT' is a UCT algorithm running en-
tirely in the abstract state space, POMCP(M,') is a POMCP
algorithm running on POMDP(M,') resulting from doing
state abstraction on the ground MDP M , POMCP(M,',O)
is the proposed hierarchical MCTS algorithm running
on POMDP(M,'), and smart-POMCP(M,',O) is a
POMCP(M,',O) algorithm equipped with hand-coded in-
formative rollout policies for options. UCT, UCT',
POMCP(M,') and POMCP(M,',O) are all developed with
purely random rollout policies. The performance is evaluated
using averaged discounted return in terms of the number of
simulations and the averaged computation time per action.
Each data point is averaged over 100 runs (or up to 2 hours
of total computation time) in terms of the number of simula-
tions and the averaged computation time per action. It can be
seen from the results that POMCP(M,') outperforms UCT
or has at least the same performance, indicating that modeling
a ground MDP with state abstraction as a POMDP and solv-
ing the POMDP via approximated, search-base online plan-
ning algorithms is feasible. UCT' uses the empirical distri-
butions of Pr(s|x) to approximate w(s, x) and finds a mem-
oryless policy as a mapping from abstract states to actions

following the weighting function approach. It has easily the
worst performance in all cases, confirming that finding mem-
oryless policies might not be the right way to do state ab-
stractions since too much information on the abstract level is
ignored. The main algorithm — POMCP(M,',O) — out-
performs UCT by orders of magnitude. POMCP(M,',O)
also outperforms POMCP(M,') substantially suggesting
that exploiting the hierarchical structure introduced by do-
ing state abstraction contributes the main improvement. With
the help of an option-specific rollout policy which is de-
signed to near-optimally move to the intersection area of
two connected rooms, smart-POMCP(M,',O) improves on
POMCP(M,',O) significantly. The possibility of introduc-
ing option-specific rollout policies can also be considered as
an advantage of POMCP(M,',O).

5.2 Continuous Rooms Domain
We further extend ROOMS[m,n, k] into a continuous state
space and propose a C-ROOMS[m,n, k] problem, where
each cell has a size of 1 (m2). The position of the agent is
represented using continuous (x, y) coordinates. A primitive
action moves the agent by a distance of 1 (m) in expecta-
tion, augmented with a Gaussian error. The agent finishes
this task if the distance to the goal is within 0.5 (m). UCT in
such continuous domains reduces to a depth-1 search which
can be seen as a single step of policy improvement over the
rollout policy. To run POMCP(M,') and POMCP(M,',O)
algorithms in this domain, we need only provide the ap-
propriate observation function defined over the continuous
state space. Figures 3c, 3g, 3d and 3h show the results
of running UCT, UCT', POMCP(M,'), POMCP(M,',O)
and smart-POMCP(M,',O) in C-ROOMS[17, 17, 4] and C-
ROOMS[25, 13, 8] problems, confirming that POMCP(M,')
and POMCP(M,',O) algorithms have the ability to run in
continuous domains without significant modifications. Sim-
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ilar trends can be seen in the results. It is also interesting to
see that although UCT has reduced to a depth-1 search in this
continuous domain, it still has rather good performance. This
might be because the value function of a random policy in
this domain provides a good heuristic, thus a greedy policy
over this heuristic can work well.

6 Related Work

Hostetler et al. (2014) analyzed state aggregation in MDPs
following the weighting function approach. They established
a performance loss bound in terms of a state abstraction er-
ror and a weighting function error. Our method has removed
the weighting function error since the POMDP formulation
guarantees that the optimal weighting function will always
be used in the algorithm. Vien and Toussaint (2014) devel-
oped a similar hierarchical MCTS framework for MDPs and
POMDPs according to the theory of MAXQ value function
decomposition. The original MAXQ decomposition is not
completely applicable to exploit the hierarchical structure de-
fined by abstract states. A MAXQ subtask is designed to
be specified with a termination predicate which partitions the
(belief) state space into a set of active (belief) states and a set
of terminal (belief) states [Dietterich, 1999a]. Using MAXQ
subtasks to model temporal transitions between abstract states
as abstract actions results inevitability in a set of overlapping
subtasks, in which case we have also to introduce a pseudo-
reward function for each subtask. Taking the rooms domain
as an example, let x! y be the subtask of moving from room
x to room y. If we treat histories ending with x as the set of
active belief states, then histories not ending with x have to
be the respective terminal belief states, in which case sup-
posedly different abstract actions A ! B and A ! C actu-
ally have the same termination condition, which leads them to
have the same learned policy. One way to avoid this problem
is to introduce a pseudo-reward function within each subtask
to encourage the subtask to move to the abstract goal state
by additionally collecting a pseudo-reward, e.g. r(h) = 1

if end(h) = y, otherwise r(h) = 0. On the other hand, if
we treat histories ending with y as the set of terminal belief
states, then histories not ending with y have to be the respec-
tive active belief states, in which case abstract actions A! B
and D ! B have the same active belief states such that they
are executable in the same set of belief states, which is not
desirable either. The options theory used in this paper does
not have this overlapping-subtask problem thanks to the con-
cepts of termination condition and initiation set, which can
be seen as an extension of the MAXQ termination predicate.
Bai et al. (2012; 2015) also developed a hierarchical online
planning algorithm for MDPs (namely MAXQ-OP) based on
MAXQ value function decomposition. Their method needs to
estimate the termination distribution for each subtask in order
to evaluate the completion function recursively in a dynamic
programming way. In this paper, the high-level and low-level
policies are learned simultaneously via a hierarchical MCTS
approach, without the need to estimate the termination distri-
butions in advance.

7 Conclusion
In this paper, we propose state- and action-abstracted MDPs
can be viewed as POMDPs. We bound the performance
loss induced by the abstraction and we describe a hierarchi-
cal MCTS algorithm for approximately solving the abstract
POMDP. The algorithm converges to a recursively optimal
hierarchical policy for the ground MDP consistent with the
input state and action abstractions. Empirical results show
that the proposed approach improves ground MCTS by or-
ders of magnitude. In future work, we plan to extend this
approach to reinforcement learning algorithms with features
(such as those introduced by various state-space function ap-
proximators). The non-Markovianess introduced by features
can be overcome by using a POMDP formulation; the hierar-
chical structure in the feature space can be exploited by using
a similar hierarchical MCTS approach as in this paper.
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